Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 19-27    https://doi.org/10.11896/j.issn.1005-023X.2017.019.003
  材料综述 |
化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*
龙晓阳1,2, 俄松峰2, 李朝威2, 李涛涛2, 吴隽1, 姚亚刚2
1 武汉科技大学耐火材料与冶金国家重点实验室,武汉430081;
2 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215000
A Review of Chemical Vapor Deposition for Synthesis of Boron Nitride Nanotubes:Reaction Devices, Vapor Sources and Catalysts
LONG Xiaoyang1,2, E Songfeng2, LI Chaowei2 , LI Taotao2 , WU Jun1, YAO Yagang2
1 The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081;
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215000
下载:  全 文 ( PDF ) ( 1911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化硼纳米管(BNNTs)具有优良的耐高温、抗氧化、防辐射、绝缘和导热性能,因此,在航空航天、辐射屏蔽、热界面材料以及深紫外发射等领域具有潜在的应用前景。然而,高品质BNNTs的可控制备和批量生产仍然是学术和工业界的重大挑战。在BNNTs的众多制备方法中,化学气相沉积法(CVD)是最有潜力实现其可控制备的方法之一。但是,科学家们对于CVD法制备BNNTs的催化机理和影响因素尚未形成共识。鉴于此,文章从反应装置、氮源、硼源和催化剂4个方面对CVD法制备BNNTs进行了综述,并系统总结了相应的规律。在此基础上,分析了目前BNNTs可控制备中存在的问题,并对CVD法在BNNTs可控制备中的作用进行了展望,以期对今后BNNTs的制备起到借鉴作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙晓阳
俄松峰
李朝威
李涛涛
吴隽
姚亚刚
关键词:  氮化硼纳米管  化学气相沉积  硼源  催化剂    
Abstract: Boron nitride nanotubes (BNNTs) have great application potential in aerospace radiation shielding materials, thermal interface materials, deep ultraviolet emission materials and many other fields due to their excellent performances—oxidation resistance, radiation shield, heat conduction and so forth. However, BNNTs’ controllable and large scale preparation still faces an enormous challenge. Among the different kinds of BNNTs’ preparation methods, chemical vapor deposition (CVD) is one of the most promising methods for its controllable preparation. Nevertheless, scientists have not reached a consensus on the growth mechanism and influencing factors of BNNTs’ synthesis by CVD. Hence, this article provides a review on preparation of BNNTs by CVD, and a discussion about the effects of reaction devices, nitrogen sources, boron sources and catalysts. Besides, the unsettled issues and a prospect for the controllable synthesis of BNNT by CVD are also proposed.
Key words:  boron nitride nanotube    chemical vapor deposition    boron source    catalyst
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O613  
  TB321  
基金资助: *国家自然科学基金(51522211);中国科学院苏州纳米技术与仿生研究所纳米器件与应用重点实验室项目(15QT02)
作者简介:  龙晓阳:男,1991年生,硕士研究生,主要从事氮化硼纳米材料方面的研究 E-mail:935683356@qq.com 姚亚刚:通讯作者,男,1980年生,博士,研究员,主要从事电子封装材料方面的研究 E-mail:ygyao2013@sinano.ac.cn 吴隽:通讯作者,男,1967年生,博士,教授,主要从事半导体薄膜材料方面的研究 E-mail:woojun@tom.com
引用本文:    
龙晓阳, 俄松峰, 李朝威, 李涛涛, 吴隽, 姚亚刚. 化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*[J]. 《材料导报》期刊社, 2017, 31(19): 19-27.
LONG Xiaoyang, E Songfeng, LI Chaowei , LI Taotao , WU Jun, YAO Yagang. A Review of Chemical Vapor Deposition for Synthesis of Boron Nitride Nanotubes:Reaction Devices, Vapor Sources and Catalysts. Materials Reports, 2017, 31(19): 19-27.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.003  或          http://www.mater-rep.com/CN/Y2017/V31/I19/19
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
2 Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron-nitride nanotubes[J]. Phys Rev B,1994, 49(7):5081.
3 Chopra N G, Luyken R J, et al. Boron-nitride nanotubes[J]. Scien-ce,1995,269(5226):966.
4 Lee C H, Xie M, Kayastha V, et al. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition[J]. Chem Mater,2010,22(5):1782.
5 Ishigami M, Aloni S, Zettl A. Properties of boron nitride nanotubes[J]. Scanning Tunn Microsc/Spectrosc Relat Tech,2003,696:94.
6 Zhi C Y, Bando Y, Tang C C, et al. Perfectly dissolved boron nitride nanotubes due to polymer wrapping[J]. J Am Chem Soc,2005,127(46):15996.
7 Lee C H, Bhandari S, Tiwari B, et al. Boron nitride nanotubes: Recent advances in their synthesis, functionalization, and applications[J]. Molecules,2016,21(7):922.
8 Chang C W, Fennimore A M, Afanasiev A, et al. Isotope effect on the thermal conductivity of boron nitride nanotubes[J]. Phys Rev Lett,2006,97(8):085901.
9 Cohen M L, Zettl A. The physics of boron nitride nanotubes[J]. Phys Today,2010,63(11):34.
10 Engels R, Kemmerling G, Schelten J. Boron nitride, a neutron scintillator with deficiencies[C]∥IEEE Nuclear Science Symposium Conference Record. IEEE,2005:1318.
11 Tanur A E, Wang J S, Reddy A L M, et al. Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes[J]. J Phys Chem B,2013,117(16):4618.
12 Nigues A, Siria A, Vincent P, et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes[J]. Nat Mater,2014,13(7):688.
13 Kang J H, Sauti G, et al. Multifunctional electroactive nanocompo-sites based on piezoelectric boron nitride nanotubes[J]. ACS Nano,2015,9(12):11942.
14 Jakubinek M B, Niven J F, Johnson M B, et al. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites[J]. Phys Status Solidi A—Appl Mater Sci,2016, 213(8):2237.
15 Lee C H, Drelich J, Yap Y K. Superhydrophobicity of boron nitride nanotubes grown on silicon substrates[J]. Langmuir,2009,25(9):4853.
16 Boinovich L B, Emelyanenko A M, Pashinin A S, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings[J]. Langmuir,2012,28(2):1206.
17 Li J, Dai W, Chen M, et al. A novel single-source precursor for collapsed boron nitride nanotubes with high hydrogen storage capacity[J]. Funct Mater Lett,2016,9(06):1642001.
18 Salvetti A, Rossi L, Iacopetti P, et al. In vivo biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians[J]. Nanomedicine,2015,10(12):1911.
19 Ciofani G, Danti S, Nitti S, et al. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation[J]. Int J Pharm,2013,444(1-2):85.
20 Yamaguchi M, Meng F Q, Firestein K, et al. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties[J]. Mater Sci Eng A,2014,604:9.
21 Lee C H, Qin S Y, Savaikar M A, et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold ouantum dots[J]. Adv Mater,2013,25(33):4544.
22 Hao B, Asthana A, Hazaveh P K, et al. New flexible channels for room temperature tunneling field effect transistors[J]. Sci Rep,2016,6:20293.
23 Parashar V, Durand C P, Hao B Y, et al. Switching behaviors of graphene-boron nitride nanotube heterojunctions[J]. Sci Rep,2015,5:12238.
24 Shuai C J, Gao C D, Feng P, et al. Boron nitride nanotubes reinforce tricalcium phosphate scaffolds and promote the osteogenic differentiation of mesenchymal stem cells[J]. J Biomed Nanotechnol,2016, 12(5):934.
25 Grant J T, Carrero C A, Goeltl F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354(6319):1570.
26 Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge[J]. Phys Rev Lett,1996,76(25):4737.
27 Cumings J, Zettl A. Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chem Phys Lett,2000,318(4-5):497.
28 Golberg D, Bando Y, Eremets M, et al. Nanotubes in boron nitride laser heated at high pressure[J]. Appl Phys Lett,1996,69(14):2045.
29 Lee R S, Gavillet J, De La Chapelle M L, et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration[J]. Phys Rev B,2001,64(12):121405.
30 Naumov V G, Kosyrev F K, Vostrikov V G, et al. Synthesis of boron nitride multi-walled nanotubes by laser ablation technique[J]. Laser Phys,2009,19(5):1198.
31 Chen H, Chen Y, Liu Y, et al. Over 1.0mm-long boron nitride nanotubes[J]. Chem Phys Lett, 2008,463(1-3):130.
32 Yong Bae S, Won Seo H, Park J, et al. Boron nitride nanotubes synthesized in the temperature range 1 000—1 200 ℃[J]. Chem Phys Lett,2003,374(5-6):534.
33 Li L H, Chen Y, Glushenkov A M. Synthesis of boron nitride nanotubes by boron ink annealing[J]. Nanotechnology,2010,21(10):105601.
34 Li L, Li L H, Chen Y, et al. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth[J]. Nanoscale Res Lett,2012,7:417.
35 Zhuang C, Xu H, Li L, et al. Systematic investigation of the ball milling-annealing growth and electrical properties of boron nitride nanotubes[J]. RSC Adv,2016,6(114):113415.
36 Golberg D, Bando Y, Kurashima K, et al. MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates[J]. Chem Phys Lett,2000,323(1-2):185.
37 Han W Q, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction[J]. Appl Phys Lett,1998,73(21):3085.
38 Wang Y, Yamamoto Y, Kiyono H, et al. Highly ordered boron nitride nanotube arrays with controllable texture from ammonia borane by template-aided vapor-phase pyrolysis[J]. J Nanomater, 2009,2008(6):72.
39 Zhi C Y, Bando Y, Tan C C, et al. Effective precursor for high yield synthesis of pure BN nanotubes[J]. Solid State Commun,2005,135(1-2):67.
40 Ahmad P, Khandaker M U, Khan Z R, et al. Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review[J]. RSC Adv,2015,5(44):35116.
41 Lee C H, Wang J, Kayatsha V K, et al. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition[J]. Nanotechnology,2008,19(45):455605.
42 Ahmad P, Khandaker M U, Amin Y M. Synthesis of boron nitride nanotubes by argon supported thermal chemical vapor deposition[J]. Physica E,2015,67:33.
43 Li L, Liu X W, Li L H, et al. High yield BNNTs synthesis by promotion effect of milling-assisted precursor[J]. Microelectron Eng,2013,110:256.
44 Wang L J, Li T T, Ling L, et al. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition[J]. Chem Phys Lett,2016,652:27.
45 Tang C C, Bando Y, Sato T. Synthesis and morphology of boron nitride nanotubes and nanohorns[J]. Appl Phys A,2002,75(6):681.
46 Huang Y, Lin J, Tang C, et al. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm[J]. Nanotechnology,2011, 22(14):145602.
47 Singhal S K, Srivastava A K, Gupta A K, et al. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method[J]. J Nanopart Res,2010,12(7):2405.
48 Seo D, Kim J, Park S H, et al. Synthesis of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder[J]. J Ind Eng Chem,2013,19(4):1117.
49 Wen G, Zhang T, Huang X X, et al. Synthesis of bulk quantity BN nanotubes with uniform morphology[J]. Scr Mater,2010,62(1):25.
50 Pan A, Chen Y. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method[J]. Nanoscale Res Lett,2014,9(1):555.
51 Li L H, Chen Y, Glushenkov A M. Boron nitride nanotube films grown from boron ink painting[J]. J Mater Chem,2010,20(43):9679.
52 Zhuang C C, Feng J, Xu H, et al. Synthesis of boron nitride nanotube films with a nanoparticle catalyst[J]. Chin Chem Lett,2016,27(6):871.
53 Kalay S, Yilmaz Z, Sen O, et al. Synthesis of boron nitride nanotubes and their applications[J]. Beilstein J Nanotechnol,2015,6:84.
54 Su C Y, Chu W Y, Juang Z Y, et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts[J]. J Phys Chem C,2009,113(33):14732.
55 Li L H, Li C P, Chen Y. Synthesis of boron nitride nanotubes, bamboos and nanowires[J]. Physica E, 2008,40(7):2513.
56 Yu J, Li B C P, Zou J, et al. Influence of nitriding gases on the growth of boron nitride nanotubes[J]. J Mater Sci,2007,42(11):4025.
57 Chen Y, Fitz Gerald J, Williams J S, et al. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling[J]. Chem Phys Lett,1999,299:260.
58 Fitz Gerald J D, Chen Y, Conway M J. Nanotube growth during annealing of mechanically milled boron[J]. Appl Phys A,2003,76(1):107.
59 Ma R, Bando Y, Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts[J]. Chem Phys Lett,2001,337(1-3):61.
60 Ma R Z, Bando Y, Sato T, et al. Thin boron nitride nanotubes with unusual large inner diameters[J]. Chem Phys Lett,2001,350(5-6):434.
61 Ma R Z, Bando Y, Sato T, et al. Growth, morphology, and structure of boron nitride nanotubes[J]. Chem Mater,2001,13(9):2965.
62 Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes[J]. Chem Mater, 2000,12(7):1808.
63 Kim M J, Chatterjee S, Kim S M, et al. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition[J]. Nano Lett,2008,8(10):3298.
64 Batterman S, Kovacs E. Threshold quantity criteria for risk management programs: Recommendations for toxic releases[J]. J Hazard Mater,2003,105(1-3):39.
65 Lin C C, Wang J D, Hsieh G Y, et al. Increased risk of death with congenital anomalies in the offspring of male semiconductor workers[J]. Int J Occupat Environ Health,2008,14(2):112.
66 Torres-Vega J J, Vasquez-Espinal A, Caballero J, et al. Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria[J]. Inorg Chem, 2014,53(7):3579.
67 Li Y, Zhou J E, Zhao K, et al. Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process[J]. Mater Lett,2009,63(20):1733.
68 Zhang J, Li Z Q, Xu J. Formation and structure of boron nitride nanotubes[J]. J Mater Sci Technol,2005,21(1):128.
69 Wang J, Gu Y, Zhang L, et al. Synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing method[J]. J Nanomater,2010,2010(1687-4110):80.
70 Li Y L, Cai B Q, Zhang J X. Preparation of BN nanotube by magnesiothermic reduction[J]. J Mater Eng,2008(10):85(in Chinese).
李永利, 蔡柏奇, 张久兴. 镁热还原制备BN纳米管[J]. 材料工程,2008(10):85.
71 Deepak F L, Vinod C P, Mukhopadhyay K, et al. Boron nitride nanotubes and nanowires[J]. Chem Phys Lett,2002,353(5-6):345.
72 Tay R Y, Li H, Tsang S H, et al. Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition[J]. Chem Mater,2015,27(20):7156.
73 Kalay S, Yilmaz Z. Synthesis of boron nitride nanotubes from unprocessed colemanite[J]. Beilstein J Nanotechnol,2013,4:843.
74 Matveev A T, Firestein K L, Steinman A E, et al. Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals[J]. J Mater Chem A,2015,3(41):20749.
75 Tang C, Bando Y, Sato T, et al. A novel precursor for synthesis of pure boron nitride nanotubes[J]. Chem Commun,2002(12):1290.
76 Nithya J S M, Pandurangan A. Efficient mixed metal oxide routed synthesis of boron nitride nanotubes[J]. RSC Adv,2014,4(51):26697.
77 Pakdel A, Zhi C Y, Bando Y, et al. A comprehensive analysis of the CVD growth of boron nitride nanotubes[J]. Nanotechnology,2012,23(21):1215601.
78 Kim K S, Kingston C T, Hrdina A, et al. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies[J]. ACS Nano,2014,8(6): 6211.
79 Fathalizadeh A, Pham T, Mickelson W, et al. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma[J]. Nano Lett,2014,14(8):4881.
80 Huo K F, Hu Z, Fu J J, et al. Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe-B nanoparticles with nitrogen/ammonia mixture[J]. J Phys Chem B,2003, 107(41):11316.
81 Fu J J, Lu Y N, Xu H, et al. The synthesis of boron nitride nanotubes by an extended vapour-liquid-solid method[J]. Nanotechnology,2004,15(7):727.
82 Loh K P, Lin M, Yeadon M, et al. Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles[J]. Chem Phys Lett,2004,387(1-3):40.
83 Huo K F, Hu Z, Chen F, et al. Synthesis of boron nitride nanowires[J]. Appl Phys Lett,2002,80(19): 3611.
84 Su C Y, Juang Z Y, Chen K F, et al. Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD me-thods[J]. J Phys Chem C,2009,113(33):14681.
85 Guo L, Singh R N. Selective growth of boron nitride nanotubes by plasma-enhanced chemical vapor deposition at low substrate temperature[J]. Nanotechnology,2008,19(6):72.
86 Belkerk B E, Achour A, Zhang D Y, et al. Thermal conductivity of vertically aligned boron nitride nanotubes[J]. Appl Phys Express,2016,9(7):075002.
87 Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science,2007,317(5840):932.
88 Carlson O N, Lichtenberg R R, Warner J C. Solid solubilities of oxy-gen, carbon and nitrogen in yttrium[J]. J Less-Common Met,1974,35(2):275.
89 Wang L, Li T, Long X, et al. Bimetallic catalytic growth of boron nitride nanotubes[J]. Nanoscale, 2017,9(5):1816.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[4] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[7] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[8] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[9] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[10] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[11] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[12] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[13] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[14] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[15] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed