Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21030237-9    https://doi.org/10.11896/cldb.21030237
  无机非金属及其复合材料 |
采用固体碳源制备石墨烯薄膜研究进展
汪超翔, 郭冲霄, 刘 悦*, 范同祥
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Research Progress on Synthesizing Graphene from Solid Carbon Sources
WANG Chaoxiang, GUO Chongxiao, LIU Yue*, FAN Tongxiang
State Key Lab of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 44555KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种高性能二维碳材料,石墨烯以其无与伦比的力学和功能特性受到了学界和工业界广泛的关注。目前,石墨烯及石墨烯增强复合材料正逐步走向应用。然而,随着石墨烯产业的发展,现有制备工艺越来越难以满足工业界批量化生产高质量石墨烯的需求。综合来看,当下石墨烯制备技术存在的主要问题包括:(1)制备面积大、缺陷少、层数均一的石墨烯薄膜尚存在一定的困难;(2)石墨烯较低的产率难以满足日益增长的需求。
   为解决石墨烯产率及质量问题,研究者在石墨烯制备工艺开发方面开展了大量工作。在此过程中,分子束外延技术、化学气相沉积技术、Hummers方法等诸多石墨烯薄膜制备技术被开发出来,这些技术的应用和发展使批量生产高质量石墨烯薄膜成为了可能。为适应不同技术的使用环境与需求,多种含碳物质作为前驱体被用于石墨烯薄膜的制备过程中。依据室温下状态分类,这些含碳前驱体被分为气体、液体和固体碳源。因较低的储存成本和较高的安全性,固体碳源在石墨烯生产过程中具有独特的优势。目前,包括碳材料、碳化硅(SiC)、有机高分子、生物材料乃至固体含碳废弃物均被用于石墨烯薄膜的制备过程中。
   本文综述了固体碳源制备石墨烯的研究进展,系统地介绍了利用固体碳源制备高性能石墨烯的工艺路线。同时,阐明了石墨烯在各种制备工艺过程中的形成机理。最后,通过分析各种工艺的优缺点,展望了各种工艺的未来发展方向,以期为未来的研究者开发新的石墨烯制备工艺提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪超翔
郭冲霄
刘 悦
范同祥
关键词:  固体碳源  石墨烯薄膜  分子束外延生长  化学气相沉积    
Abstract: Due to the unprecedented mechanical and functional properties of two-dimensional carbon material, graphene has attracted extensive attention in both academia and industry. Currently, graphene related materials industrial application requires mass production of high-quality graphene. However, present graphene synthesis technique is limited by: (ⅰ) fabricating large and uniform thickness of graphene with low defect density; (ⅱ) increasing fabrication yield of graphene.
Many researchers have contributed to overcome the yield and quality limitation of graphene fabrication. Various techniques, including molecular beam epitaxy, chemical vapor deposition and Hummers method have been developed. The application and development of these techniques make it possible to achieve batch production of high-quality graphene. Furthermore, to adapt to the use condition and needs of different technologies, a variety of carbonaceous materials are used as precursors in the graphene preparation. These materials can be divided into gas, liquid and solid carbon sources, according to their form at room temperature. Among them, solid carbon sources, including silicon carbide (SiC), organic polymers, biomaterials and even solid carbon containing wastes, have unique advantages on low-cost and high safety fabrication of graphene thin films.
In this paper, we review the research progress of graphene fabrication of solid carbon source. By systematical introduction of various fabrication processes, the formation mechanisms of graphene are illustrated. In addition, by analyzing the advantages and disadvantages of these processes, future development direction is prospected. This review is expected to provide guidance for future researchers on graphene fabrication via solid carbon source.
Key words:  solid carbon sources    graphene layers    molecular beam epitaxy    chemical vapor deposition
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TQ127  
基金资助: 国家自然科学基金青年项目(51901129)
通讯作者:  *yliu23@sjtu.edu.cn   
作者简介:  汪超翔,2018年6月毕业于东南大学材料科学与工程学院,获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,师从刘悦特别研究员和范同祥教授。目前主要研究方向为单层及多层石墨烯薄膜的可控制备。刘悦,上海交通大学特别研究员。2008年获复旦大学微电子系学士学位,2014年获美国德州农工大学材料科学与工程博士学位,2014至2017年于美国洛斯阿拉莫斯国家实验室从事博士后研究工作。研究方向为:金属/陶瓷复合薄膜材料的物理/化学气相沉积,极端服役过程中(应力、电磁、高温、辐照等)材料组织结构与性能的耦合关系,晶体材料先进多尺度表征、分析与模拟技术开发等研究工作。迄今为止发表SCI论文60余篇,获专利10余项。近年来应邀发表综述性文章6篇。
引用本文:    
汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
WANG Chaoxiang, GUO Chongxiao, LIU Yue, FAN Tongxiang. Research Progress on Synthesizing Graphene from Solid Carbon Sources. Materials Reports, 2022, 36(16): 21030237-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030237  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21030237
1 Novoselov K S,Geim A K,Morozov S V, et al. Science,2004,306(5696),666.
2 Geim A K. Science, 2009, 324(5934), 1530.
3 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
4 Liu F, Ming P, Li J. Physical Review B, 2007,76(6), 064120.
5 Ghosh S, Calizo I, Teweldebrhan D, et al. Applied Physics Letters, 2008, 92(15), 151911.
6 Shahil K M F, Balandin A A. Solid State Communications, 2012, 152(15), 1331.
7 Nair R R, Blake P, Grigorenko A N, et al. Science,2008,320(5881),1308.
8 Berger C, Song Z, Li X, et al. Science, 2006, 312(5777), 1191.
9 Cao Y, Fatemi V, Demir A, et al. Nature, 2018, 556(7699), 80.
10 Zhu F, Chen W, Xu Y, et al. Nature Materials, 2015,14(10), 1020.
11 Wang J, Zhang P, Liang B, et al. ACS Applied Materials & Interfaces, 2016, 8(9), 6211.
12 Yang K M, Ma Y C, Zhang Z Y, et al. Acta Materialia, 2020, 197, 342.
13 Liu H, Wu R, Hossain M D, et al. Carbon, 2021, 173, 54.
14 Huang G, Wang H, Cheng P, et al. Microelectronic Engineering, 2016, 157, 7.
15 Harfouche N, Gospodinova N, Nessark B, et al. Journal of Electroanaly-tical Chemistry, 2017, 786, 135.
16 Zhang B, Lee W H, Piner R, et al. ACS Nano, 2012, 6(3), 2471.
17 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323), 549.
18 Mattevi C, Kim H, Chhowalla M. Journal of Materials Chemistry, 2011, 21(10), 3324.
19 Berger C, Song Z, Li T, et al. The Journal of Physical Chemistry B, 2004, 108(52), 19912.
20 Sutter P W, Flege J I, Sutter E A. Nature Materials, 2008, 7(5), 406.
21 Park J, Mitchel W C, Grazulis L, et al. Advanced Materials, 2010, 22(37), 4140.
22 Al-Temimy A, Riedl C, Starke U, et al. Applied Physics Letters, 2009, 95(23), 231907.
23 Moreau E, Godey S, Ferrer F J, et al. Applied Physics Letters, 2010, 97(24), 241907.
24 Hofrichter J, Szafranek B N, Otto M, et al. Nano Letters,2010,10(1),36.
25 Kiraly B, Iski E V, Mannix A J, et al. Nature Communications, 2013, 4(1), 2804.
26 Sundar C S, Bharathi A, Hariharan Y, et al. Solid State Communications. 1992, 84(8), 823.
27 Yazdi G R, Iakimov T, Yakimova R. Crystals, 2016, 6(5), 53.
28 Kwak J, Chu J H, Choi J K, et al. Nature Communications, 2012, 3(1), 645.
29 Bae J J, Choi H, Lee Y H, et al. Current Applied Physics, 2016, 16(9), 1236.
30 Xu C, Balents L. Physical Review Letters, 2018, 121(8), 087001.
31 Zhong W R, Zhang M P, Ai B Q, et al. Applied Physics Letters, 2011, 98(11), 113107.
32 Gaskill D K. Handbook of crystal growth (second edition), Elsevier, Netherlands, 2015 pp. 755.
33 Dimitrakopoulos C, Lin Y M, Grill A, et al. Journal of Vacuum Science & Technology B, 2010, 28(5), 985.
34 Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. Science, 2010, 327(5966), 662.
35 Yu Q, Lian J, Siriponglert S, et al. Applied Physics Letters, 2008, 93(11), 113103.
36 Reina A, Jia X, Ho J, et al. Nano Letters, 2009, 9(1), 30.
37 Reina A, Thiele S, Jia X, et al. Nano Research, 2009, 2(6), 509.
38 Luo B, Yang S, Yuan A, et al. Nanotechnology,2020,31(48),485603.
39 Sivapragasam N, Nayakasinghe M T, Chakradhar A, et al. Journal of Vacuum Science & Technology A, 2017, 35(6), 061404.
40 Karamat S, Sonuçen S, Çelik Ü, et al. Applied Surface Science, 2016, 368, 157.
41 Liu Y, Feng H, Luo F. Carbon, 2020, 161, 153.
42 Lupina G, Lukosius M, Lippert G, et al. ECS Journal of Solid State Science and Technology, 2017, 6(5), M55.
43 Kondrashov I I, Rybin M G, Obraztsova E A, et al. Physica Status Solidi (B), 2019, 256(9), 1800688.
44 Zhu M, Du Z, Yin Z, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 502.
45 Singh Raman R K, Chakraborty Banerjee P, Lobo D E, et al. Carbon, 2012,50(11), 4040.
46 Li Z, Wu P, Wang C, et al. ACS Nano, 2011, 5(4), 3385.
47 Wu T, Ding G, Shen H, et al. Advanced Functional Materials, 2013, 23(2), 198.
48 Kwak J, Kwon T Y, Chu J H, et al. Physical Chemistry Chemical Phy-sics, 2013, 15(25), 10446.
49 Byun S J, Lim H, Shin G Y, et al. The Journal of Physical Chemistry Letters, 2011, 2(5), 493.
50 Yan Z, Peng Z, Sun Z, et al. ACS Nano, 2011, 5(10), 8187.
51 Kwon H J, Ha J M, Yoo S H, et al. Nanoscale Research Letters, 2014, 9(1), 618.
52 Li X, Cai W, Colombo L, et al. Nano Letters, 2009, 9(12), 4268.
53 Huang M, Zhang Y, Wang C, et al. Catalysis Today, 2015, 256, 209.
54 Xu M, Fujita D, Sagisaka K, et al. ACS Nano, 2011, 5(2), 1522.
55 Ruan G, Sun Z, Peng Z, et al. ACS Nano, 2011, 5(9), 7601.
56 Ray A K, Sahu R K, Rajinikanth V, et al. Carbon,2012,50(11),4123.
57 Pan F, Jin J, Fu X, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 11108.
58 Sharma S, Kalita G, Hirano R, et al. Carbon, 2014, 72, 66.
59 Vijapur S H, Wang D, Botte G G. ECS Solid State Letters, 2013, 2(7), 45.
60 Akhavan O, Bijanzad K, Mirsepah A. RSC Advances,2014,4(39),20441.
[1] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[2] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[3] 余姝君, 田春蓉. 湿气阻隔涂层的研究进展[J]. 材料导报, 2022, 36(13): 20100166-7.
[4] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[5] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[6] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[7] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[8] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[9] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[10] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[11] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[12] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[13] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[14] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[15] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed