Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20100166-7    https://doi.org/10.11896/cldb.20100166
  高分子与聚合物基复合材料 |
湿气阻隔涂层的研究进展
余姝君, 田春蓉*
中国工程物理研究院化工材料研究所,四川 绵阳 621900
Research Progress of Moisture Barrier Coating
YU Shujun, TIAN Chunrong*
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
下载:  全 文 ( PDF ) ( 4546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 湿气阻隔涂层是指对水分渗透有一定阻隔性的涂层,可以便捷而有效地阻隔绝大部分湿气的进入,广泛用于对水汽敏感的物品和装置的包装中。无机纳米涂层由于其致密的结构而具有较好的湿气阻隔性能,但在制备和使用过程中不可避免地会产生缺陷使水分子能够自由通过,从而不具备长效阻隔的效果。聚合物涂层对气体小分子的阻隔性能较差,但具有较好的韧性且便于成型,与无机涂层复合,能够弥补无机涂层的缺陷,大幅提高涂层的湿气阻隔性能以及使用寿命,从而达到“1+1>2”的效果。通过采用不同的材料复合方式和优化工艺方法,研究者们在制备湿气阻隔性能优异的涂层方面取得了诸多成果。本文归纳了湿气阻隔涂层的阻隔机理,总结了不同类型湿气阻隔涂层材料制备方法的最新研究进展,分析了湿气阻隔涂层所面临的问题并展望了其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余姝君
田春蓉
关键词:  湿气阻隔涂层  无机涂层  聚合物涂层  化学气相沉积  物理气相沉积  原子层沉积    
Abstract: Moisture barrier coating is a type of surface protective materials fabricated to prevent moisture penetration, and it is widely used in the packaging of products and apparatus susceptible to environmental moisture. Inorganic coating inevitably contains defects that are generated during fabrication and service, though they perform well in shielding against moisture due to their dense structures. Hence they are inadequate to serve as long-term barriers, because water molecules can pass freely through these defects. Polymer coatings are less effective compared with the inorganic ones in blocking small gas molecules, yet they own advantages of higher toughness and easier preparation. While integrated with inorganic coating, polymer coating can counteract the defects and greatly improve the moisture barrier performance and service life of the coating, obtaining a ‘1+1>2’ effect. Global researchers have made remarkable efforts in testing different combinations of coating materials and optimizing preparation conditions, which results in many profitable achievements in fabricating various coatings with excellent moisture barrier properties. In this paper, the working mechanisms of moisture barrier coatings and the latest research progress on the state-of-the-art preparation methods are summarized, while the challenges and development prospects in this field are discussed.
Key words:  moisture barrier coating    inorganic coating    polymer coating    chemical vapor deposition    physical vapor deposition    atomic layer deposition
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB332  
  TQ633  
基金资助: NSAF联合基金(U2030201)
通讯作者:  * tianchr_icm@caep.cn   
作者简介:  余姝君,2016年毕业于四川大学,获得工学学士学位;2019年6月毕业于南开大学,获得理学硕士学位;目前就职于中国工程物理研究院化工材料研究所,主要从事聚氨酯泡沫塑料设计及改性研究。
田春蓉,硕士,中国工程物理研究院化工材料研究所研究员。1993年毕业于兰州大学,获理学学士学位;2003年毕业于北京理工大学,获硕士学位。1993年至今历任中国工程物理研究院化工材料研究所助理研究员、副研究员、研究员。先后承担了多项国防科技预先研究课题及中物院学科发展基金课题的研究工作。在功能性聚氨酯材料、耐热环氧泡沫材料、纳米改性聚合物复合材料以及相变储能材料方面进行了较为深入的研究工作。获省部级以上科技进步奖7项,发表SCI论文10余篇,授权发明专利6项。
引用本文:    
余姝君, 田春蓉. 湿气阻隔涂层的研究进展[J]. 材料导报, 2022, 36(13): 20100166-7.
YU Shujun, TIAN Chunrong. Research Progress of Moisture Barrier Coating. Materials Reports, 2022, 36(13): 20100166-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100166  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20100166
1 Li H Y, Tong X X, Shi S X. Coating type high barrier film, Chemical Industry Press, China, 2016 (in Chinese).
李红元, 童晓霞, 石淑先. 涂布型高阻隔薄膜,化学工业出版社, 2016.
2 Liu Z. Investigation of SiOx-(DCPD/MA)f barrier film prepared by magnetron Co-sputtering on PET substrate. Ph.D. Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
刘壮. PET基底磁控共溅射SiOx-(DCPD/MA)f阻隔薄膜的研究. 博士学位论文,哈尔滨工业大学,2013.
3 Roberts A P, Henry B M, Sutton A P, et al. Journal of Membrane Science, 2002, 208(1-2), 75.
4 Kirchheim D, Jaritz M, Mitschker F, et al. Journal of Physics D Applied Physics, 2017, 50(8), 085203.
5 Baukh V, Huinink H P, Adan O C G, et al.Polymer, 2012, 53(15), 3304.
6 Jarvis K L, Evans P J, Triani G.Surface & Coatings Technology, 2018, 337, 44.
7 Liu S, Wu Y, Nie J, et al.Journal of Coatings Technology and Research, 2019, 16(2), 429.
8 Bertino M F, Smarsly B, Stocco A, et al.Advanced Functional Materials, 2009, 19(8), 1235.
9 Hillel D, Rosenzweig C, Powlson D S, et al.Encyclopedia of soils in the environment, Academic Press, USA, 2004.
10 Perrotta A, Van Beekum E R J, Aresta G, et al.Microporous & Mesoporous Materials, 2014, 188, 163.
11 Chiu H L, Liao Y C, Pan G T, et al.Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 168.
12 Madhup M K, Shah N K, Parekh N R.Progress in Organic Coatings, 2016, 102, 186.
13 Kim L H, Kim K, Park S, et al.ACS Applied Materials & Interfaces, 2014, 6(9), 6731.
14 Oh J, Shin S, Park J, et al.Thin Solid Films, 2016, 599, 119.
15 Ahmadzada T, McKenzie D R, Jameset N L, et al. Thin Solid Films, 2015,591,131.
16 Seo S W, Jung E, Chae H, et al.Organic Electronics, 2012, 13(11), 2436.
17 Starostin S A, Keuning W, Schalken J P, et al. Plasma Processes and Polymers, 2016, 13(3), 311.
18 Keuning W, Van d W P, Lifka H, et al. Journal of Vacuum Science & Technology A, 2012, 30(1), 01A131.
19 Alami J, Maric Z, Busch H, et al.Surface & Coatings Technology, 2014, 255, 43.
20 Moghal J, Suttle H, Cook A G, et al.Surface & Coatings Technology, 2012, 206(14), 3309.
21 George M S, Ott A W, Klaus J W.The Journal of Physical Chemistry, 1996, 100(31), 13121.
22 Niinisto L, Ritala M, Leskela M.Materials Science and Engineering B, 1996, 41(1), 23.
23 George S M.Chemical Reviews, 2010, 110(1), 111.
24 Lim B S, Rahtu A, Gordon R G.Nature Materials, 2003, 2(11), 749.
25 Miao H, Li L H, Han M Y, et al. Surface Technology, 2018, 47(9), 163 (in Chinese).
苗虎, 李刘合, 韩明月, 等.表面技术, 2018, 47(9), 163.
26 Park J S, Chae H, Chung H K, et al.Semiconductor Science and Techno-logy, 2011, 26(3), 034001.
27 Meyer J, Schmidt H, Kowalsky W, et al. Applied Physics Letters, 2010, 96(24), 117.
28 Profijt H B, Potts S E, Sanden M C M V D, et al.Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2011, 29(5), 050801.
29 Lahtinen K, Maydannik P, Johansson P, et al.Surface & Coatings Technology, 2011, 205(15), 3916.
30 Cho T Y, Lee W J, Lee S J, et al.Thin Solid Films, 2018, 660, 101.
31 Priolo M A, Gamboa D, Holder K M, et al.Nano Letters, 2010, 10(12),4970.
32 Ruiz-Hitzky E, Sobral M M C, Gomez-Aviles A, et al.Advanced Functional Materials, 2016, 26(41), 7394.
33 Maisanaba S, Ortuno N, Jorda-Beneyto M, et al.Applied Clay Science, 2017, 138, 40.
34 Decker J J, Meyers K P, Paul D R, et al.Polymer, 2015, 61, 42.
35 Alf M E, Asatekin A, Barr M C, et al.Advanced Materials, 2010, 22(18), 1993.
36 Yu D, Yang Y Q, Chen Z, et al.Optics Communications, 2016, 362, 43.
37 Asatekin A, Barr M C, Baxamusa S H, et al.Materials Today, 2010, 13(5), 26.
38 Lau K K S, Gleason K K.Macromolecules, 2006, 39(10), 3688.
39 O'Shaughnessy W S, Edell D J, Gleason K K.Thin Solid Films, 2009, 517(12), 3612.
40 Sangermano M, Periolatto M, Signore V, et al.Progress in Organic Coa-tings, 2017, 103, 152.
41 Yuwawech K, Wootthikanokkhan J, Wanwong S, et al.Journal of Applied Polymer Science, 2017,134(45), 45010.
42 Seok J H, Kim S H, Cho S M, et al. Macromolecular Research, 2018, 26(13), 1257.
43 Parker T C, Baechle D, Demaree J D.Surface & Coatings Technology, 2011, 206(7), 1680.
44 Moro L, Krajewski T, Rutherford N, et al. In: Proceedings of SPIE-The International Society for Optical Engineering. USA, 2004, pp. 83.
45 Jarvis K L, Evans P J.Thin Solid Films, 2017, 624(Feb.28), 111.
46 Jeong E G, Han Y C, Im H G, et al.Organic Electronics, 2016, 33, 150.
47 Carosio F, Colonna S, Fina A, et al.Chemistry of Materials, 2014, 26(19), 5459.
48 Kang D J, Park G U, Park H Y, et al.Progress in Organic Coatings, 2018, 118, 66.
49 Im H, Park H Y, Kang D J.Progress in Organic Coatings, 2019, 126, 136.
50 Tsuji H, Tsuruno T.Macromolecular Materials and Engineering, 2010, 295(8), 709.
51 Gao Q, Yang D, Yang Y Q, et al.Journal of Optoelectronics Laser, 2014(9), 1721 (in Chinese).
高强, 杨丹, 杨永强, 等.光电子·激光, 2014(9), 1721.
52 Kim E, Han Y, Kim W, et al.Organic Electronics, 2013, 14(7), 1737.
53 Kim S H, Kim M, Lee J H, et al.Plasma Processes and Polymers, 2018, 15(7), 1700221.
54 Qin S, Xiang S, Eberle B, et al.Advanced Materials Interfaces, 2019, 6(16), 1900740.
55 Richardson J J, Cui J W, Bjornmalm M, et al.Chemical Reviews, 2016,116(23), 14828.
56 Zhang C, Zhang C, Cui X M, et al.ACS Applied Materials & Interfaces, 2015, 7(40), 22157.
57 Tokudome Y, Hara T, Abe R, et al.ACS Applied Materials & Interfaces, 2014, 6(21), 19355.
58 Kopanati G N, Seethamraju S, Ramamurthy P C, et al.RSC Advances, 2015, 5(41), 32580.
[1] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[2] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[3] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[4] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[5] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[6] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[7] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[8] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[9] 王铁军, 张龙戈, 车洪艳, 董浩, 郑天明, 周双双, 王学远. Cu中间层对GH4099与Mo-Cu合金HIP扩散焊接头的影响[J]. 材料导报, 2021, 35(2): 2098-2102.
[10] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[11] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[12] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[13] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[14] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[15] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed