Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15072-15080    https://doi.org/10.11896/cldb.20050187
  无机非金属及其复合材料 |
基于化学气相沉积石墨烯的传感器的研究进展
张建华1, 王朋厂1,2, 杨连乔1
1 上海大学新型显示技术及应用集成教育部重点实验室,上海 200072
2 上海大学材料科学与工程学院,上海 200444
Recent Progress of Sensors Based on Graphene Prepared by Chemical Vapor Deposition
ZHANG Jianhua1, WANG Pengchang1,2, YANG Lianqiao1
1 Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 4481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种二维碳原子层材料,石墨烯(Graphene, G)具有优异且独特的力学、电学、光学和热学等性质,在传感检测等领域具有巨大的发展潜力和广阔的应用前景。基于石墨烯材料的传感器具有灵敏度高、响应快、成本低、稳定性好等优点。化学气相沉积(Chemical vapor deposition, CVD)因其优异的可控性和可扩展性而被认为是制备大面积、高质量石墨烯薄膜的有效方法,而且CVD石墨烯薄膜适用于场效应晶体管的制造工艺,因此被广泛应用于物理、化学和生物等传感领域。本文介绍了近年来CVD石墨烯应用于传感检测领域的研究进展,包括制备技术、转移方法、传感特性以及在物理、化学、生物等传感领域的应用,并简要分析了基于CVD石墨烯的传感器所面临的困难与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建华
王朋厂
杨连乔
关键词:  石墨烯  化学气相沉积  传感器  场效应晶体管    
Abstract: With the development of science and technology, sensors are playing more and more important roles in industrial production, daily life, environmental protection, and other fields. As a two-dimensional carbon material, graphene has excellent and unique mechanical, electrical, optical, and thermal properties, which opened up the application opportunity for sensors with ultra-fast speed, high sensitivity, and long-term durability. Due to the excellent controllability and scalability, chemical vapor deposition (CVD) is considered to be the most effective way to obtain large-area, high-quality graphene films. Besides, CVD graphene films are suitable for the manufacture of graphene field-effect transistors (GFET), which is particularly attractive as next-generation electronics due to their mass-scalability and low cost of the manufacture. In this review, the latest work and advancement of sensors based on CVD graphene are discussed critically. It presents the preparation techniques, the sensing properties, and the applications in the sensor fields of physics, chemistry and biology. The challenges faced by the current graphene-based sensors along with some of the probable solutions are also briefly explained in the paper.
Key words:  graphene    chemical vapor deposition    sensor    field-effect transistor
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51505270);上海市科学技术委员会(15590500500)
作者简介:  张建华,上海大学新型显示技术及应用集成教育部重点实验室主任、教授,博士研究生导师。2001—2002年在香港城市大学电子工程学系做访问学者研究;2002—2003年,在英国Heriot Watt大学电子工程系从事博士后研究。上海OLED产业联盟秘书长,上海优秀学术带头人、新型显示首席科学家。
王朋厂,2019年毕业于上海大学,获工学学士学位。现在为上海大学材料科学与工程学院微电子学与固体电子学专业硕士研究生,主要研究领域为石墨烯等电极材料和器件。
杨连乔,上海大学新型显示技术及应用集成教育部重点实验室副研究员,博士研究生导师。2004年毕业于武汉大学动力与机械学院,2004—2009年在韩国明知大学获得硕士、博士学位,师从韩国绿色能源总统顾问申武焕教授。主要研究方向为光电器件及固态照明的开发,石墨烯等纳米材料在光电器件电极和传感器领域的制备、应用,微纳电子散热技术等。
引用本文:    
张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
ZHANG Jianhua, WANG Pengchang, YANG Lianqiao. Recent Progress of Sensors Based on Graphene Prepared by Chemical Vapor Deposition. Materials Reports, 2021, 35(15): 15072-15080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050187  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15072
1 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
2 Rodriguez-Perez L, Herranz M A, Martin N. Chem Commun(Camb),2013,49(36),3721.
3 Zhang C, Tang W, Zhang L M, et al. ACS Nano,2014,8(8),8702.
4 Loh K P, Bao Q L, Ang P K, et al. Journal of Materials Chemistry,2010,20(12),2277.
5 Jian M, Wang C, Wang Q, et al. Science China Materials,2017,60(11),1026.
6 Zhan B, Li C, Yang J, et al. Small,2014,10(20),4042.
7 Nag A, Mitra A, Mukhopadhyay S C. Sensors and Actuators A: Physical,2018,270,177.
8 Chen C H, Yang S W, Chuang M C, et al. Nanoscale,2015,7(37),15362.
9 Strupinski W, Grodecki K, Wysmolek A, et al. Nano Letters,2011,11(4),1786.
10 Wang H, Wang X, Li X, et al. 2009,2(4),336.
11 Yu Q, Lian J, Siriponglert S, et al. Applied Physics Letters,2008,93(11),113103.
12 De Arco L G, Yi Z, Kumar A, et al. IEEE Transactions on Nanotechnology,2009,8(2),135.
13 Reina A, Jia X, Ho J, et al. Nano Letters,2009,9(8),30.
14 Luong D X, Bets K V, Algozeeb W A, et al. Nature,2020,577(7792),647.
15 Deng B, Liu Z, Peng H. Advanced Materials,2019,31(9),1800996.
16 Yang X, Zhang G, Prakash J, et al. International Reviews in Physical Chemistry,2019,38(2),149.
17 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology,2010,5(8),574.
18 Khan A, Habib M R, Kumar R R, et al. Journal of Materials Chemistry A,2018,6(45),22437.
19 Zhang Y, Liang Y, Zhou J. Acta Chimica Sinica,2014,72(3),367.
20 Nandanapalli K R, Mudusu D, Lee S. Carbon,2019,152,954.
21 Nandi D, Mohan V B, Bhowmick A K, et al. Journal of Materials Science,2020,55(15),6375.
22 Zhao J, Zhang G Y, Shi D X. Chinese Physics B,2013,22(5),057701.
23 Wang T, Huang D, Yang Z, et al. Nanomicro Letters,2016,8(2),95.
24 Donnelly M, Mao D, Park J, et al. Journal of Physics D, Applied Phy-sics,2018,51(49),493001.
25 Chen H, Peng T J, Liu B, et al. Materials Reports A: Review Papers,2016,30(9),57(in Chinese).
陈浩,彭同江,刘波,等.材料导报:综述篇,2016,30(9),57.
26 Fu W, Jiang L, Van Geest E P, et al. Advanced Materials,2017,29(6),1603610.
27 Zhang Y, Zhang L Y, Zhou C W. Accounts of Chemical Research,2013,46(10),2329.
28 Ren W C, Gao L B, Ma L P, et al. New Carbon Materials,2011,26(1),71(in Chinese).
任文才,高力波,马来鹏,等.新型炭材料,2011,26(1),71.
29 Mattevi C, Kim H, Chhowalla M. Journal of Materials Chemistry,2011,21(10),3324.
30 Ma L P, Ren W, Cheng H M. Small Methods,2019,3(7),1900049.
31 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials,2015,27(35),5210.
32 Wang M C, Moestopo W P, Takekuma S, et al. Journal of Materials Chemistry C,2017,5(43),11226.
33 Banszerus L, Schmitz M, Engels S, et al. Nano Letters,2016,16(2),1387.
34 Banszerus L, Watanabe K, Taniguchi T, et al. Physica Status Solidi (RRL)-Rapid Research Letters,2017,11(7),1700136.
35 Sun J, Chen Y, Priydarshi M K, et al. Nano Letters,2015,15(9),5846.
36 Wang H, Yu G. Advanced Materials,16,28(25),4956.
37 Chen Z, Qi Y, Chen X, et al. Advanced Materials,2019,31(9),1803639.
38 Tang S, Wang H, Wang H S, et al. Nature Communications,2015,6(1),6499.
39 Wei S, Ma L P, Chen M L, et al. Carbon,2019,148,241.
40 Plutnar J, Pumera M, Sofer Z. Journal of Materials Chemistry C,2018,6(23),6082.
41 Xin H, Li W. Applied Physics Reviews,2018,5(3),11.
42 Hill E W, Vijayaragahvan A, Novoselov K. IEEE Sensors Journal,2011,11(12),3161.
43 Bogue R. Sensor Review,2014,34(3),233.
44 Yao J, Wang H, Chen M, et al. Mikrochim Acta,2019,186(6),395.
45 Song Y P, Feng M, Zhan H B. Progress in Chemistry,2013,25(5),698(in Chinese).
宋英攀,冯苗,詹红兵.化学进展,2013,25(5),698.
46 Mayila Keranmu, Li S C, Hu T H, et al. Materials Reports,2019,33(S1),57(in Chinese).
马依拉·克然木,李首城,胡天浩,等.材料导报,2019,33(S1),57.
47 Zhang X, Wang Y, Luo G, et al. Sensors (Basel),2019,19(13),2966.
48 Wang X N, Hu P A. Frontiers of Materials Science,2012,6(1),26.
49 Forsyth R, Devadoss A, Guy O J. Diagnostics (Basel),2017,7(3),45.
50 Kanai Y, Ohmuro-Matsuyama Y, Tanioku M, et al. ACS Sensors,2020,5(1),24.
51 Kwong H T D, Lieberthal T J, Watts C, et al. Scientific Reports,2019,9(1),13946.
52 Zhang Q, Li P, Liao Y, et al. Microelectronics Reliability,2018,85,118.
53 Ma X Y, Gu W X, Shen J Y, et al. Nanoscale Research Letters,2012,7(1),677.
54 Sotoudeh A, Amirmazlaghani M. Superlattices and Microstructures,2018,120,828.
55 Abbott J, Ham D, Xu G. Methods of Molecular Biology,2017,1572,169.
56 Giubileo F, Di Bartolomeo A. Progress in Surface Science,2017,92(3),143.
57 Cai S, Liu X, Huang J, et al. RSC Advances,2017,7(76),48333.
58 Chen B, Liu Y, Wang G, et al. Nano,2018,13(11),28.
59 Chu J, Marsden A J, Young R J, et al. ACS Applied Materials & Interfaces,2019,11(34),31338.
60 Wang B, Zhong S, Ge Y, et al. Nano Research,2020,13(4),891.
61 Cai X, Sushkov A B, Suess R J, et al. Nature Nanotechnology,2014,9(10),814.
62 Gosciniak J, Rasras M, Khurgin J B. ACS Photonics,2020,7(2),488.
63 Januszko A, Iwan A, Maleczek S,et al. Journal of Nanomaterials,2017,2017,1.
64 Niu S, Wang S, Lin L, et al. Energy & Environmentral Science,2013,6(12),3576.
65 Khan U, Kim T H, Ryu H, et al. Advanced Materials,2017,29(1),3544.
66 Zhang H, Yu J, Yang X, et al. ACS Nano,2020,14(3),3461.
67 Ponzoni A, Comini E, Concina I, et al. Sensors (Basel),2012,12(12),17023.
68 Liu X, Cheng S, Liu H, et al. Sensors (Basel),2012,12(7),9635.
69 Fine G F, Cavanagh L M, Afonja A, et al. Sensors (Basel),2010,10(6),5469.
70 Bhoga S S, Singh K. Ionics,2007,13(6),417.
71 Fan X, Elgammal K, Smith A D, et al. Carbon,2018,127,576.
72 Wei C, He Z Z, Liu Q B, et al. CIESC Journal,2017,68(11),4423(in Chinese).
蔚翠,何泽召,刘庆彬,等.化工学报,2017,68(11),4423.
73 Song H, Li X, Cui P, et al. Sensors and Actuators B: Chemical,2017,244,124.
74 Seekaew Y, Phokharatkul D, Wisitsoraat A, et al. Applied Surface Science,2017,404,357.
75 Rigoni F, Maiti R, Baratto C, et al. Nanotechnology,2017,28(41),414001.
76 Zhang Z W, Fang R Y, Gao Z H, et al. Chinese Journal of Sensors and Actuators,2018,31(11),1669(in Chinese).
张增文,房瑞阳,高致慧,等.传感技术学报,2018,31(11),1669.
77 Yuan Y, Zheng Y, Liu J, et al. Microchimica Acta,2017,184(12),4723.
78 Seekaew Y, Wisitsoraat A, Phokharatkul D, et al. Sensors and Actuators B: Chemical,2019,279,69.
79 Pham T, Ramnani P, Villarreal C C, et al. Carbon,2019,142,504.
80 Carter K P, Young A M, Palmer A E. Chemical Reviews,2014,114(8),4564.
81 Fan Q, Li J, Zhu Y, et al. ACS Applied Materials & Interfaces,2020,12(4),4797.
82 Takagiri Y, Ikuta T, Maehashi K. ACS Omega,2020,5(1),877.
83 Yuan Q L, Wu S D, Ye C, et al. Sensors and Actuators B: Chemical,2019,285,333.
84 Wei S, Hao Y, Ying Z, et al. Journal of Materials Science & Technology,2020,37,71.
85 Soganci T, Ayranci R, Harputlu E, et al. Sensors and Actuators B: Chemical,2018,273,1501.
86 Wang S, Zhao L, Xu R, et al. Journal of Electroanalytical Chemistry,2019,853,113527.
87 Zhou L, Mao H, Wu C, et al. Biosensors and Bioelectronics,2017,87,701.
88 Bay H H, Vo R, Dai X, et al. Nano Letters,2019,19(4),2620.
89 Ji J, Pang Y, Li D, et al. Microsystems & Nanoengineering,2020,6(1),1.
90 Bai Z K, Zhang Y T, Li S H, et al. Chinese Journal of Analytical Chemistry,2020,48(9),1149(in Chinese).
白志坤,张逸涛,李社红,等.分析化学,2020,48(9),1149.
91 Han D, Chand R, Kim Y S. Biosensors and Bioelectronics,2017,93,220.
92 Campos R, Borme J, Guerreiro J R, et al. ACS Sensors,2019,4(2),286.
93 Benvidi A, Saucedo N M, Ramnani P, et al. Electroanalysis,2018,30(8),1791.
94 Kim H E, Schuck A, Lee J H, et al. Sensors and Actuators B: Chemical,2019,291,96.
95 Tian M, Xu S, Zhang J, et al. Advances in Condensed Matter Physics,2018,2018(13),1.
96 Fernandes E, Cabral P D, Campos R, et al. Applied Surface Science,2019,480,709.
97 Ono T, Kanai Y, Inoue K, et al. Nano Letters,2019,19(6),4004.
98 Chen S, Sun Y, Xia Y, et al. Biosensors and Bioelectronics,2020,156,112128.
99 Green N S, Norton M L. Analytica Chimica Acta,2015,853,127.
100 Ushiba S, Okino T, Miyakawa N, et al. Japanese Journal of Applied Physics,2019,59,4.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[6] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[7] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[8] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[9] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[10] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[11] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[12] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[13] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[14] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[15] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed