Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12039-12043    https://doi.org/10.11896/cldb.20040237
  无机非金属及其复合材料 |
英寸级少层MoS2薄膜的低温可控制备
郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静
武汉科技大学材料与冶金学院,省部共建耐火材料与冶金国家重点实验室,武汉 430081
Controllable Preparation of Inch-Size MoS2 Few-Layer Thin Films at Low Temperature
GUO Caisheng, WU Jun, NIU Ben, XIONG Fen, ZHU Bailin, HUANG Chengbin, LIU Jing
The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 3416KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 大面积二硫化钼(MoS2)薄膜的可控制备是其走向应用的关键环节,尤其是少层及P型电导的MoS2,对于器件应用具有重要意义,但鲜有文献报道。本工作采用室温射频(RF)磁控溅射法,在玻璃衬底上制备了英寸级的少层MoS2薄膜,并经低温退火,实现了大面积较高质量的MoS2薄膜可控制备。原子力显微镜(AFM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电子显微镜(HRTEM)和紫外可见吸收光谱(UV-vis)分析结果表明:所制得的大面积超薄薄膜为3层的多晶膜,厚度约2.2 nm,且均匀、平整、可控,薄膜结晶性好、稳定性高。使用同样的工艺在Si/SiO2基片上制备少层MoS2薄膜,并将其制成背栅场效应晶体管(TFT),电学表征表明该薄膜呈现P型导电特征,载流子迁移率为0.183 cm2·V-1·s-1。本工作提供了一种大面积少层MoS2薄膜的可控制备方法,而且制备温度低,工艺简单且兼容性强,易实现大规模工业化生产。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭才胜
吴隽
牛犇
熊芬
祝柏林
黄成斌
刘静
关键词:  MoS2  低温硫化退火  大面积制备  场效应晶体管    
Abstract: The controllable preparation of large area molybdenum disulfide (MoS2) thin film is the key to its application, especially the MoS2 with few layers and p-type conductivity, which is of great significance for the device application, but few literatures have been reported. In this paper, inch sized few-layer MoS2 thin films were prepared successfully and controllably on glass substrate through room-temperature radio frequency (RF) magnetron sputtering deposition combined with sulfuration annealing at low temperature. The results of atomic force microscopy (AFM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and ultraviolet visible absorption spectroscopy (UV-vis) show that the large area ultra-thin MoS2 film is composed of polycrystalline three-layer, of which the thickness is of about 2.2 nm. The film is uniform, flat, controllable and with good crystallinity and high stability. The few-layer MoS2 film were prepared on the Si/SiO2 substrate by the same process, a back-gate field effect transistor (TFT) with P-type conductivity and carrier mobility of 0.183 cm2·V-1·s-1 is achieved. The proposed synthesis progress with a characteristic of simpleness and low-temperature is suitable for industrial large-scale production, and paves a selectable way for facile and efficient preparing few- and mono-layer MoS2 film with large-area.
Key words:  MoS2    low-temperature sulfuration annealing    large area preparation    field-effect transistor
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TB383.2  
  TQ136.12  
基金资助: 国家自然科学基金(051301105;051471105)
通讯作者:  woojun@wust.edu.cn, woojun@tom.com   
作者简介:  郭才胜,武汉科技大学材料与冶金学院,硕士研究生,主要从事二维材料的制备。
吴隽,武汉科技大学材料与冶金学院省部共建耐火材料与冶金国家重点实验室,教授。博士毕业于华中科技大学,目前主要从事功能薄膜材料制备与应用研究。
引用本文:    
郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
GUO Caisheng, WU Jun, NIU Ben, XIONG Fen, ZHU Bailin, HUANG Chengbin, LIU Jing. Controllable Preparation of Inch-Size MoS2 Few-Layer Thin Films at Low Temperature. Materials Reports, 2021, 35(12): 12039-12043.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040237  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12039
1 Novoselov K S, Jiang D, Schedin F, et al.Proc Natl Acad Sci USA, 2005, 102(30), 10451.
2 Sun C, Zhao K, He Y, et al. ACS Applied Materials & Interfaces, 2019, 11(23), 20762.
3 Wang H, Lu Z, Kong D, et al.ACS Nano, 2014, 8(5), 4940.
4 Lim Y R, Song W, Han J K, et al.Advanced Materials, 2016, 28(25), 5025.
5 Radisavljevic B, Radenovic A, Brivio J, et al.Nature Nanotechnology, 2011, 6(3), 147.
6 Lopez-Sanchez O, lembke D, Kayci M, et al.Nature Nanotechnology, 2013, 8(7), 497.
7 Bertolazzi S, Brivio J, Kis A.ACS Nano, 2011, 5(12), 9703.
8 Chang H Y, Yang S, Lee J, et al.ACS Nano, 2013, 7(6), 5446.
9 Zheng J, Yan X, Lu Z, et al.Advanced Materials, 2017, 29(13), 1604540.
10 Lee C, Yan H, Brus L E, et al.ACS Nano, 2010, 4(5), 2695.
11 Coleman J N, Lotya M, O'Neill A, et al.Science, 2011, 331(6017), 568.
12 Tan L K, Liu B, Teng J H, et al.Nanoscale, 2014, 6(18), 10584.
13 Martella C, Melloni P, Cinquanta E, et al.Advanced Electronic Materials, 2016, 2(10), 1600330.
14 Liu L, Huang Y, Sha J, et al.Nanotechnology, 2017, 28(19), 195605.
15 Shree S, George A, Lehnert T, et al.2D Materials, 2019, 7(1), 015011.
16 Ardahe M, Hantehzadeh M R, Choranneviss M.Journal of Electronic Materials, 2020, 49(2), 1002.
17 Liu K K, Zhang W, Lee Y H, et al.Nano Letters, 2012, 12(3), 1538.
18 Tao J, Chai J, Lu X, et al.Nanoscale, 2015, 7(6), 2497.
19 Ma S M, Kwon S J, Cho E S.Journal of Nanoscience and Nanotechnology, 2019 19(3), 1439.
20 Hussain S, Shehzad M A, Vikraman D, et al.Nanoscale, 2016, 8(7), 4340.
21 Mak K F, He K, Shan J, et al.Nature Nanotechnology, 2012, 7(8), 494.
22 Coehoorn R, Haas C, Dijkstra J, et al.Physical Review B, 1987, 35(12), 6195.
23 Splendiani A, Sun L, Zhang Y, et al.Nano Letters, 2010, 10(4), 1271.
24 Mak K F, Lee C, Hone J, et al.Physical Review Letters, 2010, 105(13), 136805.
25 He K, Poole C, Mak K F, et al.Nano Letters, 2013, 13(6), 2931.
26 Eda G, Yamaguchi H, Voiry D, et al.Nano Letters, 2011, 11(12), 5111.
27 Lee J U, Kim K, Han S, et al.ACS Nano, 2016, 10(2), 1948.
28 Hussain S, Singh J, Vikraman D, et al.Scientific Reports, 2016, 6, 30791.
29 Chen F, Su W, Ding S, et al.Ceramics International, 2019, 45(12), 15091.
30 Zhao Y, Luo X, Li H, et al.Nano Letters, 2013, 13(3), 1007.
31 Bagaev V S, Krivobok V S, Nikolaev S N, et al.Journal of Russian Laser Research, 2019, 40(3), 269.
32 Li H, Zhang Q, Yap C C R, et al.Advanced Functional Materials, 2012, 22(7), 1385.
33 Jeon J, Jang S K, Jeon S M, et al.Nanoscale, 2015, 7(5), 1688.
34 Van der zande A M, Huang P Y, Chenet D A, et al.Nature Materials, 2013, 12(6), 554.
35 Zhong W, Deng S, Wang K, et al.Nanomaterials, 2018, 8(8), 590.
36 Hasuike N, Yamauchi S, Seki K, et al.Journal of Physics: Conference Series, 2019,1220(1), 012057.
37 McDonnell S, Addou R, Buie C, et al.ACS Nano, 2014, 8(3), 2880.
38 Serrao C R, Diamond A M, Hsu S L, et al.Applied Physics Letters, 2015, 106(5), 052101.1.
39 Chuang S, Battaglia C, Azcatl A, et al.Nano Letters, 2014, 14(3), 1337.
40 Dolui K, Rungger I, Sanvito S.Physical Review B Condensed Matter, 2013, 87(16), 165402-1.
41 Wu J, Li H, Yin Z, et al.Small, 2013, 9(19), 3314.
42 Wang X, Feng H, Wu Y, et al.Journal of the American Chemical Society, 2013, 135(14), 5304.
43 Lee Y H, Zhang X Q, Zahng W, et al.Advanced Materials, 2012, 24(17), 2320.
44 Kang K, Xie S, Huang L, et al.Nature, 2015, 520(7549), 656.
[1] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[2] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[3] 程倩, 姚正军, 张帆, 牛永康. 二次镍层复镀对Ni-MoS2复合涂层结构和摩擦承载能力的影响[J]. 材料导报, 2020, 34(22): 22093-22099.
[4] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[5] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[6] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[7] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[8] 马浩, 杨瑞霞, 李春静, 韩应宽. 二硫化钼纳米片的制备及其光敏和气敏特性研究[J]. 材料导报, 2018, 32(6): 860-864.
[9] 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
[10] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed