Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3183-3193    https://doi.org/10.11896/cldb.20010036
  高分子与聚合物基复合材料 |
基于纳米仿生酶构建电化学生物传感器用于活性氧检测
郝喜娟1, 赵沈飞1,2, 张春媚1, 胡芳馨1, 杨鸿斌1, 郭春显1,2
1 苏州科技大学材料科学与器件研究院,苏州 215009;
2 江苏省生化传感与芯片技术工程实验室,苏州 215009
Electrochemical Biosensors Fabricated Using Nanomaterials-based Biomimetic Enzymes for Detection of Reactive Oxygen Species: a Review
HAO Xijuan1, ZHAO Shenfei1,2, ZHANG Chunmei1, HU Fangxin1, YANG Hongbin1, GUO Chunxian1,2
1 Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China;
2 Jiangsu Laboratory of Biological and Chemical Sensing and Biochip, Suzhou 215009, China
下载:  全 文 ( PDF ) ( 8968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 活性氧是一类存在于人体内性质活泼的含氧物质的总称,紫外线、化学药品以及大气污染等都可以诱导人体内活性氧的产生。活性氧涉及多种生理和病理过程,是阿尔茨海默病、帕金森病、癌症等多种疾病的信号分子,活性氧浓度的检测可以预测这些疾病。但活性氧半衰期短,活细胞释放量少,因此,快速准确地检测活性氧浓度对疾病的诊断和预防至关重要。
电化学生物传感器具有操作简单、响应快、成本低、易于微型化等优点,适用于实时原位检测活性氧。它作为一种重要的活性氧检测平台而受到研究者们的密切关注。传感材料是电化学生物传感器的核心部分,决定着传感器的灵敏度、响应速度、线性范围和检出限。因此,合理设计传感材料是构建高性能活性氧电化学生物传感器的重要环节。纳米仿生酶因其独特的催化活性、选择性及稳定性,近年来被广泛用于构建活性氧电化学生物传感器。作为两种典型的纳米仿生酶,普鲁士蓝和磷酸锰受到研究者的关注。其中,普鲁士蓝因具有较高的过氧化氢催化活性和选择性,被称为“人工过氧化物酶”,一般用于检测过氧化氢。磷酸锰是一种独特的锰盐,可通过歧化反应从水溶液中快速去除超氧化物,一般用于检测超氧负离子。为提高上述两种纳米仿生酶的导电性、催化活性和稳定性,研究者一般将它们与高导电性材料复合,并通过调控纳米仿生酶尺寸和增加附着量等手段制备高效复合材料。
本文围绕上述两种典型的纳米仿生酶(普鲁士蓝和磷酸锰),总结了其相关电化学生物传感器在活性氧检测中的研究进展。首先介绍了两种典型纳米仿生酶及其复合材料的制备方法和物化特性,然后概括了它们分别在过氧化氢和超氧负离子电化学生物传感器中的最新进展,特别是对其物化特性和检测性能的关系进行了相关分析。此外,本文还展望了上述两种纳米仿生酶的未来发展前景,对其基础研究和实际应用所面临的挑战给出了一些建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝喜娟
赵沈飞
张春媚
胡芳馨
杨鸿斌
郭春显
关键词:  电化学生物传感器  纳米仿生酶  普鲁士蓝  磷酸锰  活性氧  过氧化氢  超氧负离子    
Abstract: Reactive oxygen species (ROSs) are a class of oxygen-containing and active substances that are widely found in biological activities of human body. ROSs can be induced by ultraviolet radiation, chemicals and air pollution. Recent studies find that ROSs are involved in a variety of physiological and pathological processes and are signaling molecules for several diseases such as Alzheimer's disease, Parkinson's disease and cancers. To quantitively detect ROSs can be used as a promising diagnostic tool for these diseases. However, ROSs always have a short half-life time, and their concentrations in living cells/organisms are very low. Additionally, there are many biological interferences co-existing with ROSs. Therefore, to realize sensitive and selective detection of ROSs in (or released from) living cells/organisms is still a great challenge.
Electrochemical biosensors have advantages of simple operation, low cost, and easy miniaturization, and particularly can be used as sensing platforms for detection of ROSs due to their fast response and high specificity. Performance of an electrochemical biosensor is largely dependent on the electrode material (sensing material) that directly interacts with target ROSs molecules. Thus, to design and fabricate desired electrode materials is very important to construct high-performance electrochemical biosensors, which can detect ROSs with high selectivity, high sensitivity, good linear range and low detection limit. Nanomaterials-based biomimetic enzymes are nanomaterials with enzyme-like characteristics while avoiding the disadvantages of low stability of natural enzyme. They have been explored as electrode materials for electrochemical biosensors to detect ROSs. Among various nanomaterials-based biomimetic enzymes, Prussian blue and manganese phosphate have attracted great attention and have widely used in detecting hydrogen peroxide and superoxide, respectively.
In this review, taking Prussian blue and manganese phosphate as examples, we summarize recent advances of electrochemical biosensors with nanomaterials-based biomimetic enzymes for detecting ROSs. We begin by firstly discussing the synthesis methods of the two materials. In the following section, we summarize the recent progress and development of Prussian blue and manganese phosphate based electrochemical biosensors, particularly focusing on exploring the relation between physicochemical properties of the two nanomaterials-based biomimetic enzymes and sensing performance of their electrochemical biosensors. Finally, opportunities of future development of such a research filed are prospected, and challenges faced by these nano-biomimetic enzymes in practical applications as well as possible solutions for the challenges are discussed and proposed.
Key words:  electrochemical biosensor    nanomaterials-based biomimetic enzyme    Prussian blue    manganese phosphate    active oxygen species    hydrogen peroxide    superoxide anion
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TB34  
  O657.1  
基金资助: 国家自然科学基金(21605110; 21972102); 江苏省双创团队(外国院士类)及双创人才
作者简介:  郝喜娟,2018年毕业于黄淮学院,获得工学学士学位。现为苏州科技大学材料科学与器件研究院硕士研究生,师从郭春显教授。目前主要研究领域为仿生催化及电化学传感器。
郭春显,苏州科技大学材料科学与器件研究院教授、国家高层次人才青年专家、省发改委工程实验室主任。 在新加坡南洋理工大学获得博士学位,并在澳大利亚阿德莱德大学和美国凯斯西储大学进行了博士后研究。研究专注于低维材料基催化剂和仿生催化剂。在相关领域杂志包括 Chem. Rev.、Angew. Chem. Int. Ed.、Adv. Mater.、ACS Nano等发表论文120余篇,论文被引用9300余次。
引用本文:    
郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
HAO Xijuan, ZHAO Shenfei, ZHANG Chunmei, HU Fangxin, YANG Hongbin, GUO Chunxian. Electrochemical Biosensors Fabricated Using Nanomaterials-based Biomimetic Enzymes for Detection of Reactive Oxygen Species: a Review. Materials Reports, 2021, 35(3): 3183-3193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010036  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3183
1 Peng Q, Yan X, Shi X, et al.Biosensors and Bioelectronics,2019,144,111665.2 Rane P, Sarmah D, Bhute S, et al.ACS Chemical Neuroscience,2019,10(1),44.3 Li Z, Hu Y, Fu Q, et al.Advanced Functional Materials,DOI:10.1002/adfm.201905758.4 Li J, Zhang J, Chen Y, et al.ACS Applied Materials & Interfaces,2017,9(41),35683.5 Bandyopadhyay S, Kundu S, Giri A, et al.Chemical Communications,2018,54(66),9123.6 Wang Y, Gao M, Chen Q, et al.Analytical Chemistry,2018,90(16),9769.7 Li Y, Shi L, Cai X, et al.Electrochimica Acta,2019,294,304.8 Zhou W, Dong S, Lin Y, et al.Chemical Communications,2017,53(13),2122.9 Zhang Y, Dai M, Yuan Z.Analytical Methods,2018,10(38),4625.10 Li F F.Construction and application of a novel cu-based artificial metal mimic enzyme. Master's Thesis, Beijing University of Chemical Techno-logy, China,2018(in Chinese).林菲菲. 新型Cu基人工金属模拟酶的构建及应用.硕士学位论文,北京化工大学,2018.11 Wu J, Wang X, Wang Q, et al.Chemical Society Reviews,2019,48(4),1004.12 Gao L X.Application of electrochemical sensors in detection of cell active oxygen and study of biological effects. Master's Thesis, Southwest University, China,2015(in Chinese).高丽霞. 电化学传感器在细胞活性氧检测及生物学效应研究中的应用.硕士学位论文,西南大学,2015.13 Wei H, Wang E.Chemical Society Reviews,2013,42(14),6060.14 Karyakin A A, Gitelmacher O V, Karyakina E E.Analytical Chemistry,1995,67(14),2419.15 Wang H H.Synthetic assembly and electrochemical study of the ordered structure of prussian blue and its derivatives. Master's Thesis, Zhejiang Normal University, China,2012(in Chinese).王慧慧. 普鲁士蓝及其衍生物纳米有序结构的合成组装和电化学研究.硕士学位论文,浙江师范大学,2012.16 Barnese K, Gralla E B, Cabelli D E, et al.Journal of the American Chemical Society,2008,130(14),4604.17 Luo C, Li Y, Long J G.Scientia Sinica Chimica,2015,45(10),1026(in Chinese).罗成,李艳,龙建纲.中国科学:化学,2015,45(10),1026.18 Ge Jun, Lu D N, Zhu J Y, et al.CIESC Journal,2014,65(7),2668(in Chinese).戈钧,卢滇楠,朱晶莹,等.化工学报,2014,65(7),2668.19 Li J R, Sheng A G, Hu J M.Chinese Journal of Applied Chemistry,2016,33(11),1245(in Chinese).李俊容,沈爱国,胡继明.应用化学,2016,33(11),1245.20 Dong H J, Zhang C, Fan Y Y, et al.Progress in Biochemistry and Biophysics,2018,45(2),105(in Chinese).董海姣,张弛,范瑶瑶,等.生物化学与生物物理进展,2018,45(2),105.21 Itaya K, Shoji N, Uchida I.Journal of the American Chemical Society,1984,106(12),3423.22 Zhang L H, Zhang H Y, Li C, et al.Chinese Journal of Sensors and Actuators,2014,27(4),22(in Chinese).张乐华,张华阳,李冲,等.传感技术学报,2014,27(4),22.23 Wang Z, Zhang L M, Tian Y.Chinese Journal of Analytical Chemistry,2014,42(1),1(in Chinese).王振,张立敏,田阳.分析化学,2014,42(1),1.24 Luo Y, Tian Y, Rui Q.Chemical Communications,2009(21),3014.25 Zhou J, Luo Y, Zhu A, et al.Analyst,2011,136(8),1594.26 Keggin J F, Miles F D.Nature,1936,137(3466),577.27 Guo C X, Zheng X T, Lu Z S, et al.Advanced Materials,2010,22(45),5164.28 Rojas D, Della Pelle F, Del Carlo M, et al.Sensors and Actuators B: Chemical,2018,275,402.29 Itaya K, Ataka T, Toshima S.Journal of the American Chemical Society,1982,104(18),4767.30 Li J, Qiu J D, Xu J J, et al.Advanced Functional Materials,2007,17(9),1574.31 Haghighi B, Varma S, Alizadeh Sh F M, et al.Talanta,2004,64(1),3.32 Marwan J, Addou T, Bélanger D.Chemistry of Materials,2005,17(9),2395.33 Ho K, Chen C, Hsu H, et al.Biosensors and Bioelectronics,2004,20(1),3.34 Du D, Wang M, Qin Y, et al.Journal of Materials Chemistry,2010,20(8),1532.35 Chu Z, Liu Y, Jin W.Biosensors and Bioelectronics,2017,96,17.36 Millward R C, Madden C E, Sutherland I, et al.Chemical Communications,2001(19),1994.37 Vaucher S, Li M, Mann S.Angewandte Chemie International Edition,2000,39(10),1793.38 Zheng X, Kuang Q, Xu T, et al.The Journal of Physical Chemistry C,2007,111(12),4499.39 Zhang M, Hou C, Halder A, et al.Biosensors and Bioelectronics,2017,89,570.40 Sheng Q, Zhang D, Shen Y, et al.Frontiers of Materials Science,2017,11(2),147.41 Su S, Han X, Lu Z, et al.ACS Applied Materials & Interfaces,2017,9(14),12773.42 Cao L, Liu Y, Zhang B, et al.ACS Applied Materials & Interfaces,2010,2(8),2339.43 Shen Q, Jiang J, Fan M, et al.Journal of Electroanalytical Chemistry,2014,712,132.44 Luo H, Chen X, Zhou P, et al.Journal of the Electrochemical Society,2004,151(9),C567.45 Li J, Zhang F, Hu Z, et al.Advanced Healthcare Materials,2017,6(14),1700005.46 Gautam M, Poudel K, Yong C S, et al.International Journal of Pharmaceutics,2018,549(1),31.47 Hu M, Furukawa S, Ohtani R, et al.Angewandte Chemie International Edition,2012,51(4),984.48 Jin K, Park J, Lee J, et al.Journal of the American Chemical Society,2014,136(20),7435.49 Neher G, Salguero T T.Crystal Growth & Design,2017,17(9),4864.50 Shen X, Wang Q, Liu Y, et al.Scientific Reports,2016,6(1),28989.51 Ma X, Hu W, Guo C, et al.Advanced Functional Materials,2014,24(37),5897.52 Wang Y, Wang D, Sun L, et al.Biosensors and Bioelectronics,2019,133,133.53 Hu F X, Kang Y J, Du F, et al.Advanced Functional Materials,2015,25(37),5924.54 Zou Z, Ma X Q, Zou L, et al.Nanoscale,2019,11(6),2624.55 Zheng J, Wang B, Jin Y, et al.Microchimica Acta,2019,186(2),95.56 Zhou L.Preparation of poly (N-acetanilide)-Prussian blue hybrid composite film and application to hydrogen peroxide sensing. Master's Thesis, University of Science and Technology of China, China,2014(in Chinese).周磊. 聚乙酰苯胺-普鲁士蓝杂化膜材料的制备及其在过氧化氢检测中的应用.硕士学位论文,中国科学技术大学,2014.57 Zen J, Chen P, Kumar A S.Analytical Chemistry,2003,75(21),6017.58 Su S, Han X, Lu Z, et al.ACS Applied Materials & Interfaces,2017,9(14),12773.59 Müller A, Sachse S, Decker M, et al.Journal of Electrochemical Science and Engineering, DOI: doi.org/10.5599/jese.719.60 Zhang W, Wang L, Zhang N, et al.Electroanalysis,2009,21(21),2325.61 Komkova M A, Karyakina E E, Karyakin A A.Journal of the American Chemical Society,2018,140(36),11302.62 Balamurugan T S T, Mani V, Hsieh C, et al.Sensors and Actuators B, Chemical,2018,257,220.63 Eryiğit M, Temur E, özer T Ö, et al.Electroanalysis,2019,31(5),905.64 Zhang Y, Huang B, Yu F, et al.Microchimica Acta,2018,185(2),86.65 Haghighi B, Hamidi H, Gorton L.Sensors and Actuators B, Chemical,2010,147(1),270.66 Li R, Liu X, Qiu W, et al.Analytical Chemistry,2016,88(15),7769.67 Ishizaki M, Ohshida E, Tanno H, et al.Inorganica Chimica Acta,2020,502,119314.68 Cao L, Han G, Xiao H, et al.Analytica Chimica Acta,2020,1096,34.69 Ding A, Wang B, Ma X, et al.RSC Advances,2018,8(22),12354.70 Zheng J, Wang B, Jin Y, et al.Microchimica Acta,2019,186(2),95.71 Cai X, Gao Q, Zuo S, et al.Electroanalysis,2020,32(3),598.
[1] 姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
[2] 张雪雁, 孟昭旭, 廉鹤. 普鲁士蓝基纳米粒子在癌症治疗及成像中的应用进展[J]. 材料导报, 2020, 34(Z2): 95-98.
[3] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[4] 张婷, 刘桂华, 陈斌斌, 齐天贵, 周秋生, 彭志宏, 李小斌. 高比表面积氧化铝微粉从碱性废水中除氟[J]. 材料导报, 2020, 34(4): 4020-4024.
[5] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[6] 李晓楠, 李景华, 杨宪园, 胡燕, 蔡开勇. 中空Fe3O4-PB复合纳米粒类Fenton催化降解苯酚[J]. 材料导报, 2020, 34(13): 13017-13021.
[7] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[8] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[9] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed