Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1105-1111    https://doi.org/10.11896/cldb.19090190
  无机非金属及其复合材料 |
无机抗菌材料抗菌机理研究进展
姚希燕1, 唐晓宁1, 王晓楠2, 张彬3, 夏振昊1
1 昆明理工大学化学工程学院,昆明 650500
2 鞍钢化学科技有限公司,鞍山 114000
3 昆明理工大学理学院,昆明 650500
Research Progress on Antibacterial Mechanisms of Inorganic Antibacterial Materials
YAO Xiyan1, TANG Xiaoning1, WANG Xiaonan2, ZHANG Bin3, XIA Zhenhao1
1 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Anshan Chemical Technology Company, Anshan 114000, China
3 Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 10288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机材料作为抗菌剂进入人们的视野以来,其材料特性与抗菌机理不断得到研究。无机抗菌材料主要分为金属离子型(如Ag、Cu、Zn 等)与金属氧化物光催化型(如TiO2、ZnO等),将其制备成纳米级材料后,其由于比表面积增大,可以更好地吸附于微生物,获得更好的抗菌效果。同时,相比于有机抗菌材料和天然抗菌材料,无机抗菌材料具有毒性低、稳定性高、耐久性好、不容易引起细菌耐药性的优点。
   然而,近些年对无机抗菌材料抗菌机理的提出与研究缺乏系统的分析和论证,大部分研究人员仅对某一金属型抗菌材料提出该种材料的抗菌机理。银系抗菌材料的抗菌机理是无机抗菌材料中研究较为深入的,一般认为银系抗菌材料释放出Ag+,Ag+吸附于细菌表面,然后击穿细胞膜进入细胞内部与细胞内容物发生反应,最后导致细菌失活。而金属氧化物光催化型(如TiO2)抗菌材料由于其较宽的光学带隙在光照的条件下可发生光催化反应,从而产生大量如·OH、·O2-一类的自由基,当这些自由基与细胞接触时,与细胞内有机物反应,导致细菌失活。
   本文归纳了各种无机材料的抗菌机理研究方式及内容,并对其进行了总结分析,根据抗菌活性物质和作用对象将抗菌机理分为三类:直接接触型、溶出-渗透型和催化氧化型。目前的研究表明,三种抗菌机理往往共同存在,相互交错,对其机理分析仍不透彻,因此建议从分子生物学和基因层面,比如细胞修复、蛋白质转换等方面揭示抗菌机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚希燕
唐晓宁
王晓楠
张彬
夏振昊
关键词:  无机抗菌材料  抗菌机理  活性氧(ROS)    
Abstract: Since the inorganic materials as antibacterial agents has entered the field of vision, its materials and antibacterial mechanism have been continuously studied and summarized. Inorganic antibacterial materials are mainly divided into metal ion type (such as Ag, Cu, Zn) and metal oxide photocatalytic type (for example TiO2 and ZnO), its preparation into nano-scale materials, it can better adsorb microorganisms because of the larger specific surface area, so it has better antibacterial effect. At the same time, inorganic antibacterial materials have the advantages of low toxicity, high stability, good durability and not easy to cause bacterial resistance compared with organic antibacterial materials and natural antibacterial materials.
However, in recent years, the antibacterial mechanism of inorganic antibacterial materials has not been systematically analyzed and demonstrated. Most researchers have only proposed the antibacterial mechanism of a metal-type antibacterial material.The antibacterial mechanism of silver system antibacterial materials is more deeply studied in inorganic antibacterial materials. It is generally believed that silver system antibacterial materials release Ag+ and adsorbs on the surface of bacteria, then penetrates the cell membrane into the cell to react with the cell contents, and finally leads to the inactivation of bacteria. Whereas metal oxide photocatalytic type (such as TiO2) antibacterial materials are generally thought to produce a large number of free radicals for instance ·OH, ·O2- because their wide optical band gap can produce photocatalytic reactions under the conditions of illumination. When these free radicals are in contact with cells, they react with intracellular organic matter, resulting in bacterial deactivation.
This review offers the antibacterial mechanism of various inorganic materials is summarized and analyzed. According to the antibacterial active substances and objects of action, the antibacterial mechanisms are divided into three types: direct contact type, dissolution-osmotic type and catalytic oxidation type. The current research shows that the three antibacterial mechanisms often exist together and interlaced with each other, and the mechanism analysis is still not thorough. It is suggested that the internal process of antibacterial mechanism should be revealed from the molecular biological and genetic levels for example cell repair and protein conversion.
Key words:  inorganic antibacterial materials    antibacterial mechanisms    reactive oxygen species (ROS)
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TB34  
基金资助: 国家重点研发计划重点专项(2017YFC0210303);昆明理工大学分析测试基金(2019M20182208017)
作者简介:  姚希燕,2018年6月毕业于昆明理工大学,获得工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在唐晓宁副教授的指导下进行研究。目前主要研究二氧化钛在可见光下的光催化性能以及抗菌性能。
唐晓宁,昆明理工大学化学工程学院副教授、硕士研究生导师。1998年7月本科毕业于辽宁科技大学化工学院,2011年7月在昆明理工大学获得冶金物理化学博士学位。长期从事功能材料设计、材料物理化学的研究工作,在材料领域发表论文40余篇,授权发明专利5件。
引用本文:    
姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
YAO Xiyan, TANG Xiaoning, WANG Xiaonan, ZHANG Bin, XIA Zhenhao. Research Progress on Antibacterial Mechanisms of Inorganic Antibacterial Materials. Materials Reports, 2021, 35(1): 1105-1111.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090190  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1105
1 Stankic S, Suman S, Haque F, et al. Journal of Nanobiotechnology,2016,14,73.
2 Wyszogrodzka G, Marszalek B, Gil B, et al. Drug Discovery Today,2016,21,1009.
3 Wang J, Shui Z H, Ji Z J,et al. Materials Reports A: Research Papers,2013,27(5),59(in Chinese).
王静,水中和,冀志江,等.材料导报:综述篇,2013,27(5),59.
4 Stoimenov P K, Klinger R L, Marchin G L, et al. Langmuir,2002,18,6679.
5 de Lucas-Gil E, Leret P, Monte-Serrano M, et al. ACS Applied Nano Materials,2018,1,3214.
6 Arshad M, Qayyum A, Shar G A, et al. Journal of Photochemistry and Photobiology B,2018,185,176.
7 Chang Y N, Zhang M, Xia L, et al. Materials,2012,5,2850.
8 Gupta K, Singh R P, Pandey A, et al. Beilstein Journal of Nanotechnol,2013,4,345.
9 Sirelkhatim A, Mahmud S, Seeni A, et al. Nanomicro Letters,2015,7,219.
10 Qiang Q, Ni H W, Xing W, et al. Jourmal of Wuhan University of Science and Technology(Natural Science),2007,30(2),121(in Chinese).
墙蔷,倪红卫,幸伟,等.武汉科技大学学报(自然科学版),2007,30(2),121.
11 Eckhardt S, Brunetto P S, Gagnon J, et al. Chemical Reviews,2013,113,4708.
12 Le Ouay B, Stellacci F. Nano Today,2015,10,339.
13 Amro N A,Kotra L P, Bulychev A, et al. Langmuir,2000,16,2789.
14 Lok C N, Ho C M, Chen R, et al. Journal of Proteome Research,2006,5,916.
15 Li W R, Xie X B, Shi Q S, et al. Applied Microbiology and Biotechnology,2010,85,1115.
16 Sondi I, Salopek-Sondi B. Journal of Colloid and Interface Science,2004,275,177.
17 Ramalingam B, Parandhaman T, Das S K. ACS Applied Materials Interfaces,2016,8,4963.
18 Padmavathy N, Vijayaraghavan R. Science and Technology of Advanced Materials,2008,9,035004.
19 Mirzajani F, Ghassempour A, Aliahmadi A, et al. Research Microbiology,2011,162,542.
20 Kumar R, Umar A, Kumar G, et al. Ceramics International,2017,43,3940.
21 Li M, Zhu L, Lin D. Environmental Science & Technology,2011,45,1977.
22 McCarthy T J, Zeelie J J, Krause D J.Journal of Clinical Pharmacy and Therapeuics,1992,17,51.
23 Duran N, Duran M, de Jesus M B, et al. Nanomedicine,2016,12,789.
24 Zheng K, Setyawati M I, Leong D T, et al. Coordination Chemistry Reviews,2018,357,1.
25 Holt K B, Bard A J.Biochemistry,2005,357,13214.
26 Kang S J, Cho Y I, Kim K H, et al. Biological Trace Element Research,2016,171,101.
27 Rai M, Yadav A, Gade A. Biotechnology Advances,2009,27,76.
28 Wu Z S, Hu Y R, Ren Y, et al. Chemical Industy and Ebgineering Prograss,2015,34(5),1349(in Chinese).
吴宗山,胡海洋,任艺,等.化工进展,2015,34(5),1349.
29 Duran N, Marcato P D, Alves O L, et al. Journal of Nanobiotechnology,2005,3,8.
30 Feng Q L,Wu J G, Chen Q, et al. Journal of Biomedical Materials and Research Banner,2005,52,662.
31 Vishnupriya S, Chaudhari K, Jagannathan R, et al. Particle & Particle Systems Characterization,2013,30,1056.
32 Abdal Dayem A, Hossain M K, Lee S B, et al. International Journal of Molecular Sciences,2017,18,120.
33 Fu P P, Xia Q, Hwang H M, et al. Journal of food and drug analysis,2014,22,64.
34 Flores-Lopez L Z, Espinoza-Gomez H, Somanathan R. Journal of Applied Toxicology,2019,39,16.
35 Chatterjee A K, Chakraborty R, Basu T. Nanotechnology,2014,25,135101.
36 Chen S, Guo Y, Zhong H, et al. Chemical Engineering Journal,2014,256,238.
37 Park H J, Kim J Y, Kim J, et al. Water Research,2009,43,1027.
38 Premanathan M, Karthikeyan K, Jeyasubramanian K, et al. Nanomedicine,2011,7,184.
39 Pisoschi A M, Pop A. European Journal of Medicinal Chemistry,2015,97,55.
40 Guo Z, Liu X, Liu Y, et al. Biosens Bioelectron,2016,86,671.
41 Applerot G, Lellouche J, Lipovsky A, et al. Small,2012,8,3326.
42 Joe A, Park S H, Kim D J, et al. Journal of Solid State Chemistry,2018,267,124.
43 Zhao F R, Zhou X Q, Hong Z L, et al. Materials Reports,2005,19(6),35(in Chinese).
赵芙蓉,周晓琴,洪樟连,等.材料导报,2005,19(6),35.
44 Lei S M, Xiong B H, Hao Q, et al. Resources Envinment & Engineering,2006,20(4),459(in Chinese).
雷绍民,熊毕华,郝骞,等.资源环境与工程,2006,20(4),459.
45 Nithya N, Bhoopathi G, Magesh G, et al. Materials Science in Semiconductor Processing,2018,83,70.
46 Qi K, Cheng B, Yu J, et al. Journal of Alloys and Compounds,2017,727,792.
47 Cai Y, Strømme M, Welch K. Journal of Biomaterials and Nanobiotech-nology,2014,5,200.
48 He W, Wu H, Wamer W G, et al. ACS Applied Materials & Interfaces,2014,6,15527.
49 Wang Dan, Zhao Lixia, Ma Haiyan, et al. Environment Science & Technology,2017,51,10137.
50 Park E J, Yi J, Kim Y, et al. Toxicology in Vitro,2010,24,872.
51 Masip L, Veeravalli K, Georgiou G. Antioxidants & Redox Signaling,2006,8,753.
52 Arakha M, Saleem M, Mallick B C, et al. Scientific Reports,2015,5,9578.
53 Wang X, Liu S, Li M, et al. Journal of Inorganic Biochemistry,2016,163,214.
54 Xu H, Qu F, Xu H, et al. Biometals,2012,25,45.
[1] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[2] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[3] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[4] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[5] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[6] 王馨博, 苏茹月, 栗丽, 梁国杰, 赵越, 栾志强, 李凯, 习海玲. 锆基金属-有机骨架呼吸道防护材料研究进展[J]. 材料导报, 2020, 34(23): 23121-23130.
[7] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[8] 余冬燕, 吴幸雅, 闫共芹, 曹杰亮. 稀土掺杂磷酸盐荧光粉的研究进展[J]. 材料导报, 2020, 34(Z2): 41-47.
[9] 廖磊, 吕承航, 黄维刚, 秦霸. 电沉积法制备纳米SnO2及其应用综述[J]. 材料导报, 2020, 34(Z2): 57-62.
[10] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[11] 李永波, 孙芳兵, 万晓霞, 段力峰, 丁笑晖, 黄成亮. 吸波涂料用磁性吸收剂研究进展[J]. 材料导报, 2020, 34(Z2): 71-73.
[12] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[13] 宋志昊, 张昆华, 闻明, 郭俊梅, 陈家林, 谭志龙. 相变存储材料的研究现状及未来发展趋势[J]. 材料导报, 2020, 34(21): 21099-21104.
[14] 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J]. 材料导报, 2020, 34(16): 16144-16148.
[15] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed