Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23121-23130    https://doi.org/10.11896/cldb.19090073
  金属与金属基复合材料 |
锆基金属-有机骨架呼吸道防护材料研究进展
王馨博1, 苏茹月1, 栗丽1,2, 梁国杰1,2, 赵越1, 栾志强1,2, 李凯1, 习海玲1,2
1 防化研究院,北京 100191
2 国民核生化灾害防护国家重点实验室,北京 102205
Research Progress on Zirconium-based Metal-organic Frameworks Respiratory Protection Materials
WANG Xinbo1, SU Ruyue1, LI Li1,2, LIANG Guojie1,2, ZHAO Yue1, LUAN Zhiqiang1,2, LI Kai1, XI Hailing1,2
1 Research Institute of Chemical Defense, Beijing 100191, China
2 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
下载:  全 文 ( PDF ) ( 7788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在执行作战、应急救援及事故处理等任务的过程中,经典化学战剂(Chemical warfare agents,CWAs)和有毒工业化学品(Toxic industrial chemicals,TICs)扩散均会对人员呼吸安全造成严重威胁,从而要求防毒面具必须能够同时对CWAs和TICs提供广谱有效的防护。目前,国内外过滤式防毒面具主要使用ASZM-TEDA型浸渍活性炭作为防护材料,该材料对TICs防护性能较差,且表面物理吸附的有毒物质分子室温下易发生解吸。因此,需要设计开发新型呼吸道防护材料,在对CWAs和TICs进行广谱防护的同时,实现有毒物质的原位降解。
金属-有机骨架(Metal-organic frameworks,MOFs)材料比表面积高、结构多样,其模块化的构筑方式使人们可以灵活地对MOFs性质进行按需设计,因而被认为是最有潜力实现有毒物质广谱防护和原位消毒的新型呼吸道防护材料。其中,锆基金属-有机骨架(Zr-MOFs)材料具有丰富的表面活性中心与良好的稳定性,并表现出优异的CWAs和TICs吸附与催化降解性能,近年来受到各国研究者的关注。
就用于CWAs和TICs吸附消除的Zr-MOFs材料而言,目前的研究工作主要集中于UiO-66-NH2体系。研究人员分别对其粉体和成型颗粒的吸附性能进行了系统研究,发现UiO-66-NH2粉体对NH3、Cl2和NO2等多种TICs具有优异的本征吸附能力,并进一步探索通过构筑等级孔隙结构改善有毒物质分子在UiO-66-NH2成型颗粒孔道内的扩散性质。针对用于CWAs和TICs催化降解的Zr-MOFs材料,目前的研究工作主要围绕具有不同节点连接数的一系列Zr-MOFs展开。研究人员通过优化孔径尺寸、节点连接数以及有机配体种类,实现了对Zr-MOFs有毒物质催化降解性能的有效调控,并拓展研究了Zr-MOFs在多相缓冲介质及纯液体环境中对有毒物质的催化降解能力,以推进其作为防护材料的实际应用。
本文围绕Zr-MOFs呼吸道防护材料,在分析其结构与表面酸碱性质特点的基础上,综述了Zr-MOFs材料在有毒物质吸附与催化降解方面的研究进展,探讨了Zr-MOFs结构与其性能间的构效关系,并展望了未来研究工作的重点方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王馨博
苏茹月
栗丽
梁国杰
赵越
栾志强
李凯
习海玲
关键词:    金属-有机骨架  化学战剂  有毒工业化学品  呼吸道防护  吸附  催化降解    
Abstract: During the process of combat, emergency rescue and accident handling, both chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) diffusion will pose a serious threat to the breathing safety of personnel. Therefore, the respirators are required to provide broad-spectrum protection against CWAs and TICs at the same time. The activated carbon impregnated with copper, silver, zinc, molybdenum, and triethy-lenediamine, known as the ASZM-TEDA carbon, is the main protection material used in current gas masks for military and emergency response personnel. Although a variety of chemicals are added, the ASZM-TEDA carbon still has some limitations such as poor protection performance against TICs and a high risk of physically adsorbed toxic molecules releasing at room temperature. It is thus urgent to develop novel respiratory protection materials with broad-spectrum protection and in-situ degradation capabilities against both CWAs and TICs.
Metal-organic frameworks (MOFs), characterized by their huge specific surface areas, diverse structures and on-demand modular design, are considered as the novel respiratory protection materials with the greatest potential to achieve broad-spectrum protection and in-situ degradation against toxic chemicals. In recent years, the zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their high specific surface areas, various surface active sites, remarkable stabilities, as well as excellent CWAs/TICs adsorption and catalytic degradation performance.
In terms of Zr-MOFs used for the adsorption removal of CWAs and TICs, current research work mainly focuses on UiO-66-NH2. Researchers have systematically studied the adsorption properties of UiO-66-NH2 powders and granules. They found that UiO-66-NH2 powders shows excellent intrinsic adsorption capacities for many TICs, such as NH3, Cl2, and NO2. The hierarchical structure was further developed in UiO-66-NH2 to increase the diffusion rates of toxic molecules through the pores of UiO-66-NH2 granules. In terms of Zr-MOFs used for the catalytic degradation of CWAs and TICs, current research work mainly focuses on a series of Zr-MOFs with different node connectivity. By optimizing the pore size, node connectivity and types of organic ligands, researchers have effectively regulated the catalytic degradation performance of Zr-MOFs against toxic chemicals. They further investigated the catalytic degradation behavior of toxic chemicals in heterogeneous buffer and pure liquid environment, so as to promote the practical application of Zr-MOFs as protection materials.
This review focuses on the Zr-MOFs respiratory protection materials. Based on analysis of the structures and surface chemistry of Zr-MOFs, this paper summarized the research progress on the application of Zr-MOFs in toxic chemicals adsorption and degradation. The structure-activity relationship of Zr-MOFs respiratory protection materials was discussed and the future research trend was also prospected.
Key words:  zirconium    metal-organic frameworks    chemical warfare agents    toxic industrial chemicals    respiratory protection    adsorption    catalytic degradation
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TB34  
  TJ92  
基金资助: 国家重点研发计划项目(2016YFC0204205);国家自然科学基金(21876204);国民核生化灾害防护国家重点实验室基金(SKLNBC2018-04)
通讯作者:  750455@sohu.com; fhxhl@163.com   
作者简介:  王馨博,2015年6月本科毕业于中国科学技术大学化学系,2018年6月于军事科学院防化研究院环境工程专业取得硕士学位。现为军事科学院防化研究院博士研究生,在习海玲研究员和李凯副研究员的指导下进行研究。目前主要研究方向为金属-有机骨架呼吸道防护材料。
李凯,军事科学院防化研究院副研究员、硕士研究生导师。核生化防护材料与技术、特种多孔材料专家,长期从事活性炭、碳泡沫、分子筛、气凝胶、金属-有机骨架等微纳多孔材料的研究和应用技术开发工作。先后主持或参加国家重点研发计划、军队重点科研项目等20余项,获军队科技进步二等奖1项、三等奖3项,发表论文40余篇,授权国家或国防发明专利10余项。
习海玲,军事科学院防化研究院研究员、博士研究生导师,享受国务院政府特殊津贴,现任国民核生化灾害防护国家重点实验室主任。长期从事核生化防护材料与技术、军事环境科学与工程技术研究,先后主持或参加国家重点研发计划、国家自然科学基金、军队重点科研项目等30余项,获国家科技进步二等奖1项、军队科技进步一等奖3项、二等奖9项,发表SCI论文30余篇,授权国家或国防发明专利27项。
引用本文:    
王馨博, 苏茹月, 栗丽, 梁国杰, 赵越, 栾志强, 李凯, 习海玲. 锆基金属-有机骨架呼吸道防护材料研究进展[J]. 材料导报, 2020, 34(23): 23121-23130.
WANG Xinbo, SU Ruyue, LI Li, LIANG Guojie, ZHAO Yue, LUAN Zhiqiang, LI Kai, XI Hailing. Research Progress on Zirconium-based Metal-organic Frameworks Respiratory Protection Materials. Materials Reports, 2020, 34(23): 23121-23130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090073  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23121
1 Kim K, Tsay O G, Atwood D A, et al. Chemical Reviews,2011,111(9),5345.
2 Hincal F, Erkekoglu P. FABAD Journal of Pharmaceutical Sciences,2006,31(4),220.
3 Zhou L L, Tang L H, Ning P, et al. Materials Reports A: Review Papers,2017,31(10),112(in Chinese).
周玲玲,汤立红,宁平,等.材料导报:综述篇,2017,31(10),112.
4 Khan N A, Hasan Z, Jhung S H. Journal of Hazardous Materials,2013,244-245,444.
5 Decoste J B, Peterson G W. Chemical Reviews,2014,114(11),5695.
6 Bobbitt N S, Mendonca M L, Howarth A J, et al. Chemical Society Reviews,2017,46(11),3357.
7 Liu Y, Howarth A J, Vermeulen N A, et al. Coordination Chemistry Reviews,2017,346,101.
8 Vellingiri K, Philip L, Kim K H. Coordination Chemistry Reviews,2017,353,159.
9 Kim K C. Journal of Organometallic Chemistry,2018,854,94.
10 Hönicke I M, Senkovska I, Bon V, et al. Angewandte Chemie International Edition,2018,57(42),13780.
11 Li S, Han K, Li J, et al. Microporous and Mesoporous Materials,2017,243,291.
12 Teo E Y L, Muniandy L, Ng E P, et al. Electrochimica Acta,2016,192,110.
13 Britt D, Tranchemontagne D, Yaghi O M. Proceedings of the National Academy of Sciences,2008,105(33),11623.
14 Peterson G W, Mahle J J, Balboa A, et al. Evaluation of metal-organic frameworks for the removal of toxic industrial chemicals, Edgewood Chemical Biological Center Aberdeen Proving Ground, USA,2008.
15 Peterson G W, Rossin J A. Impregnated metal-organic frameworks for the removal of toxic industrial chemicals, Edgewood Chemical Biological Center Aberdeen Proving Ground, USA,2008.
16 Glover T G, Peterson G W, Schindler B J, et al. Chemical Engineering Science,2011,66(2),163.
17 Peterson G W, Wagner G W, Balboa A, et al. The Journal of Physical Chemistry C,2009,113(31),13906.
18 Peterson G W, Wagner G W. Journal of Porous Materials,2014,21(2),121.
19 Decoste J B, Denny Jr M S, Peterson G W, et al. Chemical Science,2016,7(4),2711.
20 Peterson G W, Browe M A, Durke E M, et al. ACS Applied Materials & Interfaces,2018,10(49),43080.
21 Kim M, Cohen S M. CrystEngComm,2012,14(12),4096.
22 Bai Y, Dou Y, Xie L H, et al. Chemical Society Reviews,2016,45(8),2327.
23 Rimoldi M, Howarth A J, Destefano M R, et al. ACS Catalysis,2017,7(2),997.
24 Drout R J, Robison L, Chen Z, et al. Trends in Chemistry,2019,1(3),304.
25 Cavka J H, Jakobsen S, Olsbye U, et al. Journal of the American Chemical Society,2008,130(42),13850.
26 Bárcia P S, Guimarães D, Mendes P A P, et al. Microporous and Mesoporous Materials,2011,139(1),67.
27 Karwacki C J, Browe M A, Mahle J J, et al. Baselining structure-reactivity relationships for selected metal-organic framework and metal oxide catalysts for adsorption and decomposition, Edgewood Chemical Biological Center Aberdeen Proving Ground, USA,2018.
28 Katz M J, Brown Z J, Colón Y J, et al. Chemical Communications,2013,49(82),9449.
29 Mondloch J E, Bury W, Fairen-Jimenez D, et al. Journal of the American Chemical Society,2013,135(28),10294.
30 Feng D, Gu Z Y, Li J R, et al. Angewandte Chemie International Edition,2012,51(41),10307.
31 Furukawa H, Gándara F, Zhang Y B, et al. Journal of the American Chemical Society,2014,136(11),4369.
32 Jiang J, Gándara F, Zhang Y B, et al. Journal of the American Chemical Society,2014,136(37),12844.
33 Burtch N C, Jasuja H, Walton K S. Chemical Reviews,2014,114(20),10575.
34 Howarth A J, Liu Y, Li P, et al. Nature Reviews Materials,2016,1(3),1.
35 Decoste J B, Peterson G W, Schindler B J, et al. Journal of Materials Chemistry A,2013,1(38),11922.
36 Kandiah M, Nilsen M H, Usseglio S, et al. Chemistry of Materials,2010,22(24),6632.
37 Cmarik G E, Kim M, Cohen S M, et al. Langmuir,2012,28(44),15606.
38 Cohen S M. Chemical Reviews,2012,112(2),970.
39 Deria P, Mondloch J E, Karagiaridi O, et al. Chemical Society Reviews,2014,43(16),5896.
40 Petit C, Bandosz T J. Advanced Materials,2009,21(46),4753.
41 Yang Q, Xu Q, Jiang H L. Chemical Society Reviews,2017,46(15),4774.
42 Ghosh P, Colón Y J, Snurr R Q. Chemical Communications,2014,50(77),11329.
43 Gutov O V, Hevia M G, Escudero-Adán E C, et al. Inorganic Chemistry,2015,54(17),8396.
44 Shearer G C, Chavan S, Bordiga S, et al. Chemistry of Materials,2016,28(11),3749.
45 Wu H, Chua Y S, Krungleviciute V, et al. Journal of the American Chemical Society,2013,135(28),10525.
46 Peterson G W, Destefano M R, Garibay S J, et al. Chemistry-A European Journal,2017,23(63),15913.
47 Klet R C, Liu Y, Wang T C, et al. Journal of Materials Chemistry A,2016,4(4),1479.
48 Jasuja H, Peterson G W, Decoste J B, et al. Chemical Engineering Science,2015,124,118.
49 Decoste J B, Browe M A, Wagner G W, et al. Chemical Communications,2015,51(62),12474.
50 Peterson G W, Mahle J J, Decoste J B, et al. Angewandte Chemie International Edition,2016,55(21),6235.
51 Peterson G W, Decoste J B, Glover T G, et al. Microporous and Mesoporous Materials,2013,179,48.
52 Peterson G W, Decoste J B, Fatollahi-Fard F, et al. Industrial & Engineering Chemistry Research,2014,53(2),701.
53 Browe M A, Napolitano A, Decoste J B, et al. Journal of Hazardous Materials,2017,332,162.
54 Decoste J B, Rossin J A, Peterson G W. Chemistry-A European Journal,2015,21(50),18029.
55 Wong K Y, Gao J. Biochemistry,2007,46(46),13352.
56 Bigley A N, Raushel F M. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2013,1834(1),443.
57 Katz M J, Mondloch J E, Totten R K, et al. Angewandte Chemie International Edition,2014,53(2),497.
58 Katz M J, Moon S Y, Mondloch J E, et al. Chemical Science,2015,6(4),2286.
59 Islamoglu T, Ortuño M A, Proussaloglou E, et al. Angewandte Chemie International Edition,2018,57(7),1949.
60 Moon S Y, Wagner G W, Mondloch J E, et al. Inorganic Chemistry,2015,54(22),10829.
61 Peterson G W, Moon S Y, Wagner G W, et al. Inorganic Chemistry,2015,54(20),9684.
62 Mondloch J E, Katz M J, Isley III W C, et al. Nature Materials,2015,14(5),512.
63 Li P, Klet R C, Moon S Y, et al. Chemical Communications,2015,51(54),10925.
64 Moon S Y, Liu Y, Hupp J T, et al. Angewandte Chemie International Edition,2015,54(23),6795.
65 Yang Y C, Baker J A, Ward J R. Chemical Reviews,1992,92(8),1729.
66 Giannakoudakis D A, Bandosz T J. Detoxification of chemical warfare agents, Springer, USA,2018.
67 Liu Y, Howarth A J, Hupp J T, et al. Angewandte Chemie International Edition,2015,54(31),9001.
68 Liu Y, Moon S Y, Hupp J T, et al. ACS Nano,2015,9(12),12358.
69 Liu Y, Buru C T, Howarth A J, et al. Journal of Materials Chemistry A,2016,4(36),13809.
70 Moon S Y, Proussaloglou E, Peterson G W, et al. Chemistry-A European Journal,2016,22(42),14864.
71 Ryu S G, Kim M K, Park M, et al. Microporous and Mesoporous Mate-rials,2019,274,9.
72 Wang H, Mahle J J, Tovar T M, et al. ACS Applied Materials & Interfaces,2019,11(23),21109.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[5] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[6] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[7] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[8] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[9] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[10] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[11] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[12] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[13] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[14] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[15] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed