Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21099-21104    https://doi.org/10.11896/cldb.19080028
  无机非金属及其复合材料 |
相变存储材料的研究现状及未来发展趋势
宋志昊, 张昆华, 闻明, 郭俊梅, 陈家林, 谭志龙*
昆明贵金属研究所稀贵金属综合利用新材料国家重点实验室,昆明 650106
Research Status and Future Development Trend of Phase Change Memory Materials
SONG Zhihao, ZHANG Kunhua, WEN Ming, GUO Junmei, CHEN Jialin, TAN Zhilong
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
下载:  全 文 ( PDF ) ( 3096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新型存储技术,相变存储技术表现出非易失性、读写速度快、使用寿命长以及与现有半导体技术兼容性好等优点,自进入人们视野以来,便引起了众多研究者的关注,尤其在近10年发展飞速。学者们也在不断探索相变存储材料的相变原理,目前已有的如伞状跳跃理论、多元环理论、共振键理论等可从一定角度解释相变存储材料的相变机理。此外,研究者们还建立了理论模型,这将极有利于新型相变存储材料的开发。
相变存储材料存在结晶速度慢、结晶温度低、热稳定性差以及操作电压高等缺点,目前常用的改性方法为在原材料基础上通过掺杂非金属元素或金属元素,使其结晶速度、电阻率、热稳定性、晶粒尺寸、操作电压以及使用寿命等得到优化。如近几年开发的Ti-Sb-Te及Sc-Sb-Te新型相变存储材料,其在结晶温度、结晶速度以及热稳定性等多个方面的性能均有所提升,有望成为相变存储器的候选材料。目前,相变存储材料的制备方法主要有磁控溅射法,该方法沉积速度快,且制得的薄膜纯度高。然而,学者们目前尚未对相变存储材料的相变机理形成统一定论,相变存储材料性能较差,无法满足产业化要求,仍需进行深入研究。
本文围绕相变存储材料的发展,综述了相变存储材料的相变机理、掺杂改性、制备方法、表征手段及产业化进展等方面的研究工作,深入分析了相变存储材料相变的机理以及掺杂机制。未来相变存储材料的研究模式将转变为设计、开发、优化的方式,这将进一步缩短相变存储材料的研究周期。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋志昊
张昆华
闻明
郭俊梅
陈家林
谭志龙
关键词:  相变存储器  相变存储材料  相变机理  掺杂    
Abstract: As a new type of storage technology, phase change storage technology exhibits the advantages of non-volatility, fast read and write speed, long service life, and good compatibility with existing semiconductor technologies. Since entering people's field of vision, it has attracted many researchers. In particular, it has developed rapidly in the past decade. Scholars are also constantly exploring the phase change principle of phase change memory materials. The existing ones such as umbrella jump theory, multi-ring theory, and resonance bond theory can explain the phase change mechanism of phase change memory materials from a certain angle. In addition, the researchers have also established a theoretical model, which will greatly benefit the development of new phase change memory materials.
For phase change memory materials, there are disadvantages such as slow crystallization speed, low crystallization temperature, poor thermal stability, and high operating voltage. Currently, the commonly used modification method is to dope non-metal elements or metal elements on the basis of raw materials to make the crystallization speed, resistivity, thermal stability, grain size, operating voltage, and service life have been optimized. For example, the Ti-Sb-Te and Sc-Sb-Te new phase change memory materials developed in recent years have improved performance in many aspects such as crystallization temperature, crystallization speed, and thermal stability, and are expected to be candidate materials for phase change memory. At present, the preparation methods of phase change memory materials mainly include magnetron sputtering, which has fast deposition speedand high purity of the film produced. However, scholars have not yet reached a unified conclusion on the phase change mechanism of phase change memory materials. The performance of phase change memory materials is poor and cannot meet the requirements of industrialization, thus in-depth research is still needed.
This article focuses on the development of phase change memory materials, reviews the phase change mechanism, doping modification, pre-paration methods, characterization methods and industrialization progress of phase change memory materials, and deeply analyzes the phase change mechanism of phase change memory materials and doping mechanism. In the future, the research mode of phase change memory materials will be transformed into a design, development, and optimization method, which will further shorten the research cycle of phase change memory materials.
Key words:  phase change memory    phase change memory material    phase change mechanism    doping
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB34  
基金资助: 云南省创新团队项目(2019HC024);昆明市稀贵金属溅射靶材科技创新团队(13020169);云南省第十八批技术创新人才(13020176)
作者简介:  宋志昊,2018年6月毕业于中国矿业大学(北京),获得工学学士学位。现为昆明贵金属研究所硕士研究生,在谭志龙老师的指导下进行研究。目前主要研究领域为相变存储材料。
谭志龙,昆明贵金属研究所高级工程师、硕士研究生导师。2007年7月本科毕业于南昌航空大学材料学院,2010年7月在昆明贵金属研究所材料学专业取得硕士学位,毕业后留所工作。2018年入选云南省第十八批技术创新人才培养对象。主要从事稀贵金属功能材料的研究工作。近年来,在稀贵金属合金材料领域发表学术论文20余篇,获授权发明专利8项。
引用本文:    
宋志昊, 张昆华, 闻明, 郭俊梅, 陈家林, 谭志龙. 相变存储材料的研究现状及未来发展趋势[J]. 材料导报, 2020, 34(21): 21099-21104.
SONG Zhihao, ZHANG Kunhua, WEN Ming, GUO Junmei, CHEN Jialin, TAN Zhilong. Research Status and Future Development Trend of Phase Change Memory Materials. Materials Reports, 2020, 34(21): 21099-21104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080028  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21099
[1] Ovshinsky S R.Physical Review Letters, 1968, 21(20),1450
[2] Feinleib J.Applied Physics Letters, 18(6), 254.
[3] Gao D, Liu B. Physics, 2018,47(3),153(in Chinese).
高丹, 刘波.物理, 2018,47(3),153.
[4] Zhou Y L, Fu Y C, Wang X F, et al. Micronanoelectronic Technology, 2015, 52(12),749(in Chinese).
周亚玲, 付英春, 王晓峰,等. 微纳电子技术, 2015,52(12),749.
[5] Song Z T, Zhan Y P, Cai D, et al. Nano-Micro Letters, 2015, 7(2),172.
[6] Song Z T, Cheng Y. Functional Materials Information, 2014(5),7(in Chinese).
宋志棠, 成岩.功能材料信息, 2014(5),7.
[7] Yin Q X, Chen L. Advanced Materials Industry, 2016(7),56(in Chinese).
尹琦璕, 陈冷.新材料产业, 2016(7),56.
[8] Song Zhitang, Song Sannian, Zhu Min, et al. Science China (Information Sciences),2018,61(8),132.
[9] Yamada N, Matsunaga T.Journal of Applied Physics, 2000, 88(12),7020.
[10] Kolobov A V, Fons P, Frenkel A I, et al. Springer Handbook of Electro-nic and Photonic Materials, Springer International Publishing, Switzer-land 2017.
[11] Kolobov A V, Fons P, Frenkel A I, et al.Nature Materials, 2004, 3, 703.
[12] Kolobov A V, Fons P, Tominaga J, et al.Journal of Non-crystalline Solids, 2006, 352, 1612.
[13] Caravati S, Bernasconi M, Kuhne T D, et al.Applied Physics, Letters 2007, 91, 171906.
[14] Krbal M, Kolobov A V, Fons P, et al.Physical Review, 2011, 83, 054203.
[15] Kohara S, Kato K, Kimura S, et al.Applied Physics Letters, 2006, 89, 201910.
[16] Shportko K, Kremers S, Woda M, et al.Nature Materials, 2008, 7,653.
[17] Wu L C, Song Z T, Zhou X L, et al. Science China: Physical Mechanics Astronomy, 2016,46(10),126(in Chinese).
吴良才,宋志棠,周夕淋,等. 中国科学:物理学 力学 天文学, 2016,46(10),126.
[18] You Yin.In: Proceedings of 2017 IEEE 12th International Conference on ASIC. Guiyang, China, 2017,pp.4.
[19] Liu B. Phase-change material and technique of cell element for chalcogenide random access memory. Ph. D. Thesis, Chinese Academy of Sciences (Shanghai Institute of Microsystems and Information Technology),China, 2004(in Chinese).
刘波. 硫系化合物随机存储器关键相变材料与器件单元工艺研究.博士论文,中国科学院研究生院(上海微系统与信息技术研究所), 2004.
[20] Rao F, Song Z, Ren K, et al.Nanotechnology, DOI:10.1088/0957-4484/22/14/145702.
[21] Vinod E M, Ramesh K, Sangunni K S.Scientific Reports,2015, 5,8050.
[22] Wang D M, Lyu Y G, Song S N, et al. Acta Physica Sinica, 2015,64(15),405(in Chinese).
王东明, 吕业刚, 宋三年,等.物理学报, 2015,64(15),405.
[23] Zhang T, Zheng K, Zhang B, et al.Journal of Chinese Electron Microscopy Society, 2014,33(1),1(in Chinese).
张滔, 郑坤, 张斌,等. 电子显微学报, 2014,33(1),1.
[24] Rao F, Ding K, Zhou Y, et al.Science, 2017,358(6369),1423.
[25] Cheng J, Wang Q, Zhang C, et al.Journal of Materials Science: Materials in Electronics, 2016, 27(7),7004.
[26] Song S N, Shen L, Song Z, et al. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Washington, 2016.
[27] Lazarenko P I, Sherchenkov A A, Kozyukhin S A, et al. In: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. USA, 2016.
[28] Li L, Xun S J.Machine China, 2013(13),18(in Chinese).
李丽, 荀世界.中国机械, 2013(13),18.
[29] Wang L. Preparation andproperties of Al-doped Sb2Te3 phase-change material. Master's Thesis, University of Chinese Academy of Sciences, China, 2013(in Chinese).
王龙. Al掺杂Sb2Te3相变材料的制备与性能研究. 硕士学位论文,中国科学院大学, 2013.
[30] Ma Y D. Study on the Sb-Se based nanomaterials for low-power phase change random acess memory. Master's Thesis, Ningbo University, China, 2017(in Chinese).
马亚东. 应用于低功耗相变存储器的Sb-Se基纳米材料的制备及性能研究.硕士学位论文.宁波大学,2017.
[31] Qiu C C,Zhang X, Zhou Q F,et al. Physics, 2013,42(12),873.
秋沉沉, 张昕, 周乾飞, 等.物理, 2013,42(12),873.
[32] Chen Y, Shen X, Wang R, et al.Journal of Alloys & Compounds, 2013, 548(1),155.
[33] Liu B, Song Z T, Feng S L. Micronanoelectronic Technology, 2007, 44(2),55(in Chinese).
刘波, 宋志棠, 封松林. 微纳电子技术, 2007, 44(2),55.
[34] Yang F. Study on optical/electrical propertise of Chalcogenide phase-change materials SbTe/GeSbTe and their data storage mechanism based on C-AFM. Master's Thesis, Nanjing University, China, 2013(in Chinese).
杨菲. 硫系相变存储材料SbTe/GeSbTe的光电性质及其基于C-AFM的存储机理研究. 硕士学位论文,南京大学,2013.
[35] Li L L, Liang Q, Qiu X S, et al. Chinese Journal of Luminescence,2009,30(1),63(in Chinese).
李丽丽, 梁齐, 仇旭升,等.发光学报, 2009, 30(1),63.
[36] Liu B, Ruan H, Gan F X. Chinese Journal of Materials Research, 2002,16(4),413(in Chinese).
刘波, 阮昊, 干福熹.材料研究学报, 2002, 16(4),413.
[37] Guan Z Q. Vacuum, 2014,51(3),44(in Chinese).
关自强. 真空,2014,51(3),44.
[38] Liao Y B, Xu L, Yang F, et al. Acta Physica Sinica, 2010,59(9),6563.
廖远宝, 徐岭, 杨菲, 等.物理学报,2010,59(9),6563.
[39] Choi Y, Song I, Park M H, et al. In: Proceedings of IEEE International Solid-State Circuits Conference. San Francisco, 2012, pp. 46.
[40] Zhang G B, Yu H Y. In: Proceedings of 2016 International Workshop on Information Storage/10th International Symposium on Optical Storage. Bellingham: SPIE, 2016.
[41] Li Xi, Chen Houpeng, Xie Chenchen, et al. Physica Status Solidi (RRL)-Rapid Research Letters, DOI:10.1002/pssr.201800558.
[1] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[2] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[5] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[6] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[7] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[8] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[9] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[10] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[11] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[12] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[13] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[14] 张勇, 张耿飞, 张宇涛, 宁璠, 晁奕, 冯鹏发. CeO2掺杂Si-B复合涂层的制备及氧化行为[J]. 材料导报, 2020, 34(18): 18035-18038.
[15] 杨俊茹, 李淑磊, 汤美红, 李贺, 张悦刊. 石墨烯掺杂对WC(0001)-Co硬质合金晶相界面结合性能的影响[J]. 材料导报, 2020, 34(18): 18109-18113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed