Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23009-23019    https://doi.org/10.11896/cldb.19110130
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
碳基非贵金属电催化剂研究进展
吴雷1,†, 彭犇2,†, 周军3,4, 刘长波2, 岳昌盛2, 田玮2, 宋永辉1,4, 姜磊5
1 西安建筑科技大学冶金工程学院, 西安 710055
2 钢铁工业环境保护国家重点实验室,北京 100088
3 西安建筑科技大学化学与化工学院,西安 710055
4 陕西省冶金工程技术研究中心,西安 710055
5 陕西省一八五煤田地质有限公司,榆林 719000
Advances on Carbon-based Non-noble Metal Electrocatalyst
WU Lei1,†, PENG Ben2,†, ZHOU Jun3,4, LIU Changbo2, YUE Changsheng2, TIAN Wei2, SONG Yonghui1,4, JIANG Lei5
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing 100088, China
3 School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
4 Research Centre of Metallurgical Engineering & Technology of Shaanxi Province, Xi’an 710055, China
5 Shaanxi 185 Coal Field Geology Co., Ltd, Yulin 719000, China
下载:  全 文 ( PDF ) ( 9410KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型电池和电解水技术具有清洁、能量转化效率高等优点,其核心是阳极的析氢反应(HER)或氧还原反应(ORR)和阴极的析氧反应(OER)。然而,在这些反应中,电催化材料的研发是关键。随着新型碳材料的发现以及非贵金属在新能源领域的广泛研究与应用,电催化材料也从最初的贵金属单一材料,发展到转化效率高、抗毒性强、经济性好的碳基复合材料,其性能、结构、成本、制备工艺等各个方面都有了质的飞跃。
电催化剂的设计关键在于增加催化剂表面活性位点和自由电子的移动。通过改变材料形状、调整材料粒径和制备复合材料等方法来增大比表面积,从而增加活性位点的数量,也可以将催化剂制成多晶、核壳和合金结构以提高材料表面自由电子的移动。石墨烯、碳纳米管、介孔碳等新型碳纳米材料具有稳定性好、孔隙可调、比表面积高、导电性能优异等优点,是良好的复合基体材料;而非贵金属,尤其是铁、钴、镍、铜、钼,具有电催化活性高、稳定性好、抗毒性强、成本低等优点,可作为催化活性组分。将非贵金属负载到新型碳基体材料上,增加碳纳米材料的电子不对称密度或打破碳表面的电中性,形成更多的吸附活性位点,也更有利于SP2杂化碳表面π电子的自由移动,使得复合材料的电子分布和空间结构得到改变,从而有效地提高复合材料的电催化活性。
本文首先归纳了碳基非贵金属电催化剂的国内外研究进展;其次,分别对碳基非贵金属电催化剂的碳基体材料和催化活性组分进行对比分析;最后,总结了碳基非贵金属电催化剂的发展优势和存在的问题,并展望其前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴雷
彭犇
周军
刘长波
岳昌盛
田玮
宋永辉
姜磊
关键词:  碳基材料  非贵金属  电催化  活性组分  催化性能    
Abstract: The technologies of new type battery and electrolytic water have the advantages of clean, high conversion efficiency and so on, which the key is hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) that happened on anode or cathode. With the discovery of new carbon materials, their properties and applications in electrocatalytic oxidation or reduction reactions have attracted the attention. In addition, non-noble metals have developed rapidly in the field of new energy. The research and development of electroca-talyst materials have gone through initial single precious metal material to carbon composite with advantages of high utilization, high activity, strong toxicity resistance and low cost. All aspects of carbon composite electrocatalyst on performance, structure, cost, preparation technology and others have been significantly developed, which greatly promotes the possibility of application.
The key design of electrocatalyst is that increases the active site on catalyst surface and the movement of free electrons. The number of active sites on materials surface increases with the specific surface area, which can be controlled by the methods of changing the material shape, adjusting the particle size of material and preparing composite material. The movement of free electrons on the surface of material is improved by the structures of polycrystalline, core-shell and alloy. The new carbon materials such as graphene, carbon nanotube, porous carbon and others have the advantages of good stability, adjustable pore, high specific surface area, excellent conductivity, which are good composite matrix materials. The non-noble metals such as Fe, Co, Ni, Cu, Mo with high catalytic active, good stability, strong toxicity resistance and low coat can be sui-tably employed as catalytic active component. The non-noble metal is loaded onto the new carbon matrix materials, resulting in increasing the asymmetric density of electrons of carbon nano-materials or breaking electric neutrality on the surface of carbon, which the more adsorption active sites are produced, and the free movement of π electrons is improved on the surface of SP2 hybridization carbon. Thus, the electron distribution and spatial structure of the composites are changed, which effectively improved the electrocatalytic activity of the composites.
This review firstly offers advances of the research efforts with respect to the carbon based non-noble metal electrocatalyst between China and abroad, on the base of this retrospection, then contrastive analyzes the carbon matrix materials and active component of carbon based non-noble metal electrocatalyst, finally, concludes the developing advantages and existing problems, and prospects the bright future.
Key words:  carbon-based materials    non-noble metal    electrocatalysis    active component    catalytic performance
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TB34  
  TB333  
基金资助: 国家自然科学基金项目(51604310);陕西省自然科学基础研究计划项目(2017ZDJC-33;2019JLP-17);陕西省创新能力支撑计划(2020TD-028);钢铁工业环境保护国家重点实验室开放基金课题(YZC2019ky01)
通讯作者:  xazhoujun@126.com   
作者简介:  吴雷,2014年6月毕业于西安建筑科技大学,获得工学硕士学位。2014年至2017年主要从事化工设计工作。目前在西安建筑科技大学攻读工学博士学位,导师为周军教授,研究方向为碳基非贵金属催化剂的制备与优化。
彭犇,高级工程师,2016年1月毕业于北京科技大学冶金工程专业,获工学博士学位,现任中冶建筑研究总院环保事业部党总支书记、副总经理。目前主要从事工业生产、环境保护和资源综合利用研究。
周军,西安建筑科技大学化学与化工学院教授、博士研究生导师。1999年7月本科毕业于西北大学化工系,2002年硕士毕业于西安建筑科技大学冶金工程学院化工系,随后留校任教,并于2013年7月在西安建筑科技大学取得工学博士学位。主要从事新型绿色金属催化剂的制备与优化研究。近年来,先后主持多项国家和省部级研究项目,公开发表学术论文50余篇。曾获得多项科技奖励,如陕西省科学技术一等奖、中国有色金属学会科学科技一等奖、中国产学研合作促进会科学技术一等奖等。
引用本文:    
吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
WU Lei, PENG Ben, ZHOU Jun, LIU Changbo, YUE Changsheng, TIAN Wei, SONG Yonghui, JIANG Lei. Advances on Carbon-based Non-noble Metal Electrocatalyst. Materials Reports, 2020, 34(23): 23009-23019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110130  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23009
1 Lee I H, Cho J, Chae K H, et al. Applied Catalysis B-Environmental,2018,237,318.
2 Jaramillo T F, Jogensen K P, Bonde J, et al. Science,2007,317(5834),100.
3 Seh Z W, Kibsgaard J, Colin F, et al. Science,2017,355,4998.
4 Zhang J, Lima F H, Shao M H, et al. The Journal of Physical Chemistry B,2005,109,22701.
5 Eric J P, James R M, Carlos G R, et al. Journal of the American Chemical Society,2013,135,9267.
6 Hao J H, Shi W D. Chinese Journal of Catalysis,2018,39,1157.
7 Zhang J T, Zhao Z H, Xia Z H, et al. Nature Nanotechnology,2015,10,444.
8 Tamas V, Gergo B, Livia V, et al. Applied Catalysis B: Environmental,2018,237,826.
9 Mu X, Xu Z Q, Xie Y H, et al. Journal of Alloys and Compounds,2017,711,374.
10 Li J S, Wang Y, Liu C H, et al. Nature Communication,2016,7,11204.
11 Liu X E, Liu W, Ko M, et al. Advanced Functional Materials,2015,25,5799.
12 Li Q, Mahmood N, Zhu J H, et al. Nano Today,2014,9(5),668.
13 Wang D C. Study on the preparation and performances of Co3O4 based catalysts for oxygen reduction in alkaline exchange membrane fuel cell. Master’s Thesis, Dalian Maritime University, China,2017(in Chinese).
王东超.阴离子膜燃料电池核壳型Co3O4基氧还原催化剂的制备及性能研究.硕士学位论文,大连海事大学,2017.
14 Gong K P, Du F, Xia Z H, et al. Science,2009,323(5915),760.
15 Wang X W, Sun G Z, Routh P, et al. Chemical Society Reviews,2014,43(20),7067.
16 Zhao Y, Yang L J, Chen S, et al. Journal of American Chemical Society,2013,135(4),1201.
17 Ohms D, Herzog S, Franke R, et al. Journal of Power Sources,1992,38(3),327.
18 Guo Y X, Shang C S, Li J, et al. Science Sinica Chimica,2018,48(8),926(in Chinese).
郭亚肖,商昌帅,李敬,等.中国科学:化学,2018,48(8),926.
19 Wang Z Y, Pu Y, Wang D, et al. Chinese Science Bulletin,2018,63(34),1(in Chinese).
王志勇,蒲源,王丹,等.科学通报,2018,63(34),1.
20 Nørskov J K, Studt F, Abild R F, et al. Fundamental concepts in heterogeneous catalysis, John Wiley & Sons,USA,2014.
21 Guo Y X, Gan L F, Shang C S, et al. Advanced Functional Materials,2017,27,1602699.
22 Guo Y X, Yao Z Y, Shang C S, et al. ACS Applied Materials & Interfaces,2017,9,39312.
23 Wen G D, Wu S C, Li B, et al. Angewandte Chemie-International Edition,2015,54,4105.
24 Raymond J. Nature,1964,201,1212.
25 Adam A, Suliman M H, Dafalla H, et al. ACS Sustainable Chemistry & Engineering,2018,6,11414.
26 Lefèvre M, Proietti E, Jaouen F, et al. Science,2009,324,71.
27 Proietti E, Jaouen F, Lefevre M, et al. Nature Communication,2011,2,416.
28 Park M J, Lee J H, Hembram K P S S, et al. Catalysts,2016,6,86.
29 Rod T H, Logadottir A, Nørskov J K. Journal of Chemical Physics,2000,112,5343.
30 Singh J A, Guo A, Schumann J, et al. Catalysis Letters,2018,148,3583.
31 Mota M G, Bajdich M, Viswanathan V, et al. Journal of Physical Che-mistry C,2012,116,21077.
32 Sharifi T, Larsen C, Wang J, et al. Advanced Energy Materials,2016,6,1600738.
33 Asadpoordarvish A, Sandström A, Tang S, et al. Applied Physics Letter,2012,100,193508.
34 Han L, Dong S J, Wang E K. Advanced Materials,2016,28,9266.
35 Dai L M, Xue Y H, Qu L T, et al. Chemical Reviews,2015,115,4823.
36 Wang D W, Su D S. Energy & Environmental Science,2014,7,576.
37 Li J S, Wang Y, Liu C H, et al. Nature Communication,2016,7,11204.
38 Yang Z K, Lin L, Xu A W. Small,2016,12,5710.
39 Wu Z Y, Ji W B, Hu B C, et al. Nano Energy,2018,51,286.
40 Ding D N, Shen K, Chen X D, et al. ACS Catalysis,2018,8,7879.
41 Yan D F, Li Y X, Huo J, et al. Advanced Materials,2017,29,1606459.
42 Li J C, Hou P X, Cheng M, et al. Carbon,2018,139,156.
43 Florian B, Jani K, Arkady V K. ASC Nano,2010,5,26.
44 Sun Y, Wu J, Tian J H, et al. Electrochimica Acta,2015,178,806.
45 Zhang H J, Zhang X, Yao S W, et al. Journal of the Electrochemical Society,2018,165,526.
46 Lin M C, Gong M, Lu B G, et al. Nature,2015,520,324.
47 Li Y G, Wang H L, Xie L M, et al. Journal of American Chemical Society,2011,133,7296.
48 Behranginia A, Asadi M, Liu C, et al. Chemistry of Materials,2016,26,549.
49 Dong H F, Liu C H, Ye H T, et al. Scientific Reports,2015,5,17542.
50 Du J, Wang L X, Bai L, et al. Journal of Colloid and Interface Science,2019,535,75.
51 Pham K C, Chang Y H, Mcphail D S, et al. ACS Applied Materials & Interfaces,2016,8,5961.
52 Kim J K, Park S K, Kang Y C. Journal of Alloys and Compounds,2018,763,652.
53 Qin Q, Li P, Chen L L, et al. ACS Applied Materials & Interfaces,2018,10,39828.
54 Yuan M L, Wang M, Lu P L, et al. Journal of Colloid and Interface Science,2019,533,503.
55 Gavrilov N, Momcilovic M, Dobrota A S, et al. Surface and Coatings Technology,2018,349,511.
56 Zhang Y, Liu L H, Liu S, et al. Journal of Alloys and Compounds,2018,769,801.
57 Xiang D, Bo X J, Gao X H, et al. Journal of Colloid and Interface Science,2019,534,655.
58 Wang H T, Lu Z Y, Kong D S, et al. ACS Nano,2014,8,4940.
59 Tian J Q, Liu Q, Asiri A M, et al. Journal of the American Chemical Society,2014,136,7587.
60 Liu Y R, Du Y M, Gao W K, et al. Electrochimica Acta,2018,290,339.
61 Wendt H, Spinace E V, Netoe A O, et al. Química Nova,2005,28(6),1066.
62 Guo S J, Zhang S, Wu L H, et al. Angewandte Chemie-International Edition,2012,51,11770.
63 Liang Y Y, Wang H L, Diao P, et al. Journal of the American Chemical Society,2012,134,15849.
64 Cai P W, Huang J H, Chen J X, et al. Angewandte Chemie-International Edition,2017,56,4858.
65 Ahn C H, Okada T, Ishida M, et al. Journal of Power Sources,2016,307,474.
66 Liu Q, Tian J Q, Cui W, et al. Angewandte Communications,2014,53,6710.
67 Yan Z, Qi H, Bai X, et al. Electrochimica Acta,2018,283,548.
68 Park S W, Kim I, Oh S I, et al. Journal of Catalysis,2018,366,266.
69 Kim B K, Kim S K, Cho S K, et al. Applied Catalysis B: Environmental,2018,237,409.
70 He S Q, He S Y, Bo X, et al. Materials Letters,2018,231,94.
71 Zhou W, Lu X F, Chen J J, et al. ACS Applied Materials & Interfaces,2018,10,38906.
72 Li D J, Maiti U N, Lim J, et al. Nano Letters,2014,14,1228.
73 Ye G L, Gong Y J, Lin J H, et al. Nano Letters,2016,16,1097.
74 Feng J H, Zhou H, Wang J P, et al. International Journal of Hydrogen Energy,2018,43,20538.
75 Zheng S Z, Zheng L J, Zhu Z Y, et al. Nano-Micro Letters,2018,10,62.
76 Ali H I, Reza O, Jahan B R. International Journal of Hydrogen Energy,2018,43,8267.
77 Lee S Y, Jung H, Chae S Y, et al. Electrochimica Acta,2018,281,684.
78 Yuan C Z, Sun Z T, Jiang Y F, et al. Small,2017,13,1604161.
79 Zang Y P, Zhang H M, Zhang X, et al. Nano Research,2016,9,2123.
[1] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[2] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[3] 杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
[4] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[5] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[6] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[7] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[8] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[9] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[10] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[11] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[12] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[13] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[14] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[15] 宋大凤, 雷宗坤, 曾小华. 添加Al对燃料电池阴极催化剂(Pt-Fe)/Pt合金微观组织及氧还原催化性能的影响[J]. 材料导报, 2018, 32(23): 4061-4066.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed