Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 362-367    https://doi.org/10.11896/j.issn.1005-023X.2018.03.003
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
钴盐阴离子基团对Co-N-C催化剂电催化活性的影响
夏艺萌1,吴帅1,谭丰1,李卫1,魏清茂1,闵春刚2,杨喜昆1,2
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明理工大学分析测试研究中心,昆明 650093
Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts
Yimeng XIA1,Shuai WU1,Feng TAN1,Wei LI1,Qingmao WEI1,Chungang MIN2,Xikun YANG1,2
1 College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用化学氧化法在苯胺聚合过程中分别加入钴(Co)为Co2+而阴离子基团为(C2H3O2)22-、Cl22-、(NO3)22-、SO42-及C2O42-的乙酸钴、氯化钴、硝酸钴、硫酸钴、草酸钴等钴盐,合成出不同聚苯胺-钴(PANI-Co)配位聚合物。然后将PANI-Co聚合物作为前驱体在N2气氛中900 ℃热处理,制备出氮掺杂的Co-N-C碳基催化剂。采用SEM、XRD、XPS、Raman等手段分析Co-N-C催化剂的形貌、结构、化学组成及化学价态,并采用电化学方法测试了Co-N-C催化剂的电催化活性。结果表明,Co盐的阴离子基团对Co-N-C催化剂的形貌影响不大,但对Co-N-C催化剂中表面化学组成及含量、碳结构、石墨化程度以及Co的价态影响较大,并且Co盐的阴离子基团会影响Co-N-C催化剂的电催化活性,其氧还原(ORR)活性按照(C2H3O2)22->Cl22->(NO3)22->SO42->C2O42-顺序降低。含(C2H3O2)22-和Cl22-阴离子的钴盐制备的Co-N-C催化剂具有较高的ORR活性,这可能源于其较高含量的石墨氮和吡啶氮。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏艺萌
吴帅
谭丰
李卫
魏清茂
闵春刚
杨喜昆
关键词:  Co-N-C催化剂  聚苯胺  钴盐  阴离子基团  电催化活性    
Abstract: 

During the process of the aniline polymerization, bivalent cobalt salt with different anionic groups such as (C2H3O2)22-, Cl22-, (NO3)22-, SO42- and C2O42- were added into the solution and then different polyaniline cobalt (PANI-Co) coordination polymer were obtained. Finally, Co-N-C catalysts were prepared through pyrolysis of PANI-Co coordination polymer. The morphology, structure, chemical composition and chemical valence of the Co-N-C catalysts were characterized by scanning electron microscopy (SEM), X-ray spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectra (Raman). The electrocatalytic activity of Co-N-C catalysts were tested by electrochemical method. The results showed that the cobalt salt anionic groups had little impact on the morphology of Co-N-C catalysts, but had a great influence on the composition and surface chemistry of Co-N-C catalysts, carbon structure, degree of graphitization and the valence of Co. The cobalt salt anionic groups could affect the electrocatalytic activity of Co-N-C catalysts. The catalytic activities decreased as (C2H3O2)22->Cl22->(NO3)22->SO42->C2O42-. The Co-N-C catalysts prepared by cobalt salt containing (C2H3O2)22- and Cl22- anions had higher ORR activity, which possibly due to the higher content of graphite nitrogen and pyridine nitrogen.

Key words:  Co-N-C catalyst    polyaniline    cobalt salt    anionic groups    electrocatalytic activity
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  O643.36  
  TM911.48  
基金资助: 国家自然科学基金(21363012);国家自然科学基金(51374117)
作者简介:  夏艺萌:女,1994年生,硕士研究生,研究方向为燃料电池非铂碳基催化剂 E-mail: 809798360@qq.com
杨喜昆:通信作者,男,1963年生,教授级高工,研究方向为燃料电池催化剂 E-mail: yxk630@hotmail.com
引用本文:    
夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts. Materials Reports, 2018, 32(3): 362-367.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.003  或          http://www.mater-rep.com/CN/Y2018/V32/I3/362
图1  不同Co-N-C催化剂的XRD谱
图2  Co-N-C催化剂的SEM图:(a)Co-N-C/C4H6CoO4,(b)Co-N-C/CoCl2,(c)Co-N-C/CoSO4,(d)Co-N-C/Co(NO3)2,(e)Co-N-C/CoC2O4
Sample C 1s/% N 1s/% O 1s/% S 2p/% Co 2p/% Co 2p/eV
Co-N-C/C4H6CoO4 81.41 1.85 16.08 0.27 0.39 779.12
Co-N-C/CoCl2 81.72 2.39 15.13 0.15 0.61 779.25
Co-N-C/Co(NO3)2 83.21 2.34 13.98 0.08 0.39 779.65
Co-N-C/CoSO4 82.49 1.84 15.23 0.13 0.32 779.60
Co-N-C/CoC2O4 56.95 1.84 29.36 2.97 8.87 778.69
表1  Co-N-C的XPS表面元素分析结果
图3  Co-N-C催化剂N 1s的XPS谱
图4  Co-N-C催化剂Co 2p的XPS谱
图5  Co-N-C催化剂的拉曼光谱
图6  不同Co-N-C催化剂的CV曲线(电子版为彩图)
图7  不同Co-N-C催化剂的LSV曲线(电子版为彩图)
图8  不同Co-N-C催化剂在O2饱和的0.5 mol/L H2SO4溶液中于1 500 r/min转速下的计时电流曲线(电子版为彩图)
Sample n
Co-N-C/C4H6CoO4 3.54
Co-N-C/CoCl2 3.85
Co-N-C/Co(NO3)2 3.90
Co-N-C/CoSO4 3.63
Co-N-C/CoC2O4 2.21
表2  0.25 V电极电势下不同Co-N-C催化剂ORR过程的n值
图9  Co-N-C/C4H6CoO4在O2饱和的0.5 mol/L H2SO4溶液中不同转速下的LSV曲线及相应的K-L图(电子版为彩图)
1 Choi S I, Shao M, Lu N , et al. Synjournal and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction[J]. ACS Nano, 2016,8(10):126.
2 Wu Z, Lv Y, Xia Y , et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst[J]. Journal of the American Chemical Society, 2012,134(4):2236.
3 Bing L, Higgins D C, Xiao Q , et al. The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack[J]. Applied Catalysis B: Environmental, 2015,162:133.
4 Ohyagi S, Sasaki T . Durability of a PEMFC Pt-Co cathode catalyst layer during voltage cycling tests under supersaturated humidity conditions[J]. Electrochimica Acta, 2013,102(102):336.
5 Ma Y, Wang R, Wang H , et al. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction[J]. Physical Che-mistry Chemical Physics, 2014,16(8):3593.
6 Ding W, Li L, Xiong K , et al. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015,137(16):5414.
7 Proietti E, Jaouen F, Lefèvre M , et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011,2:416.
8 Jin H, Zhang H, Zhong H , et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science, 2011,4(9):3389.
9 Deng D, Yu L, Chen X , et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(1):371.
10 Hu Y, Jensen J O, Zhang W , et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014,53(14):3675.
11 Elumeeva K, Ren J, Antonietti M , et al. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J]. ChemElectroChem, 2015,2(4):584.
12 Wang Y, Nie Y, Wei Z D . Unification of catalytic oxygen reduction and hydrogen evolution reactions: Highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon[J]. Chemical Communications, 2015,51(43):8942.
13 Yang R, Stevens K, Dahn J R . Investigation of activity of sputtered transition-metal (TM)-C-N (TM=V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction[J]. Journal of the Electrochemical Society, 2008,155(1):B79.
14 Zhang H J, Jiang Q Z, Sun L , et al. 3D non-precious metal-based electrocatalysts for the oxygen reduction reaction in acid media[J]. International Journal of Hydrogen Energy, 2010,35(15):8295.
15 Lefèvre M, Proietti E, Jaouen F , et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324:71.
16 Peng H, Hou S, Dang D , et al. Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine[J]. Applied Catalysis B:Environmental, 2014,158:60.
17 Wu G, Johnston C M, Mack N H , et al. Synjournal-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells[J]. Journal of Materials Chemistry, 2011,21:11392.
18 Wu G, More K L, Johnston C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron,and cobalt[J]. Science, 2011,332:443.
19 殷敬华, 莫志深 . 现代高分子物理学[M]. 北京: 科学出版社, 2001.
20 Lin Senhao, Song Tingwen, Wan Honghe , et al. Ion beam effects in polyaniline films[J].Acta Polymerica Sinica, 1994(1):48(in Chinese).
20 林森浩, 荣廷文, 万洪和 , 等. 聚苯胺薄膜的离子束效应[J].高分子学报,1994(1):48.
21 Lu Min . Properties and applications of polyaniline[J].Journal of Functional Materials,1998(4):353(in Chinese).
21 陆珉 . 导电聚苯胺( PAn)的特性及应用[J].功能材料,1998(4):353.
22 Wang G, Jiang K, Xu M , et al. A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer[J]. Journal of Power Sources, 2014,266(10):222.
23 Faubert G, C?té R, Guay D , et al. Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1998,43(14-15):1969.
24 Casanovas J, Ricart J M, Rubio J , et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J]. Journal of the American Chemical Society, 1996,118(34):8071.
25 Wagner C D, Riggs W W, Davis L E , et al. Handbook of X-ray photoelectron spectroscopy[M]. USA:Perkin-Elmer corporation Physical Electronics Division, 1979: 219.
26 Cochet M, Maser W K, Benito AM , et al. Synjournal of a new polyaniline/nanotube composite: “In-situ” polymerisation and charge transfer through site-selective interaction[J]. Chemical Communications, 2001,16:1450.
27 Tuinstra F, Koenig J L . Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970,53(3):1126.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[3] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed