Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 357-361    https://doi.org/10.11896/j.issn.1005-023X.2018.03.002
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
大倍率二氧化硅/碳复合材料的制备及电化学性能表征
王艳珍1,2,3,陈明鸣1,2,3,王成扬1,2,3
1 天津大学北洋园校区化工学院,天津 300350
2 天津大学绿色合成与转化教育部重点实验室,天津 300350
3 天津化学化工协同创新中心,天津 300072
Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials
Yanzhen WANG1,2,3,Mingming CHEN1,2,3,Chengyang WANG1,2,3
1 School of Chemical Engineering and Technology, Peiyang Campus, Tianjin University, Tianjin 300350
2 Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350
3 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072
下载:  全 文 ( PDF ) ( 1798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了满足新能源储能及电动汽车对锂离子电池持续快速充电、慢速放电性能的要求,以正硅酸乙酯为二氧化硅前驱体,在两亲性炭材料(ACM)与聚乙二醇400(PEG400)形成的氢键限域体系中制备了大倍率二氧化硅/碳复合锂电负极材料(SiO2-130/C)。材料表征结果表明,二氧化硅的粒径由500 nm(未限域)降低到130 nm(限域),同时,富碳的ACM在二氧化硅纳米颗粒表面构建了导电性良好的碳框架。在0.1 A·g -1和1 A·g -1的电流密度下,SiO2-130/C的可逆比容量分别为527 mAh·g -1和347 mAh·g -1,且在1 A·g -1的电流密度下连续400个充放电循环后,仍具有483 mAh· g -1的可逆比容量,表现出优异的倍率性能及稳定的电化学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳珍
陈明鸣
王成扬
关键词:  两亲性炭材料  二氧化硅/碳复合材料  倍率性能    
Abstract: 

High-rate SiO2/C composite (called SiO2-130/C) was synthesized using tetraethyl orthosilicate (TEOS) as SiO2 precursor in a amphiphilic carbonaceous material (ACM)-polyethylene glycol 400(PEG 400) mixture. Confinement effect of smaller cells formed by ACM and PEG 400 on diameter of SiO2 was studied. The results showed that the diameter of SiO2 nanospheres was reduced from 500 nm (without confinement effect) to 130 nm (with confinement effect),and carbon framework resulting from carbon-rich ACM was constructed on the surface of SiO2. Electrochemical performance of SiO2-130/C composite was evaluated as anode material for lithium ion batteries. The reversible capacities of the SiO2-130/C composite were 527 mAh ·g -1 and 347 mAh·g -1 at current densities of 0.1 A·g -1and 1 A·g -1, respectively. Moreover, the SiO2-130/C composite, after the process of electrochemical activation, exhibited reversible capacitance as high as 483 mAh·g -1 at a current density of 1 A·g -1 over 400 cycles,indicating great rate performance and long-term cycling stability of the as-prepared SiO2-130/C composite.

Key words:  amphiphilic carbonaceous material    SiO2/C composite    rate capability
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51372168)
作者简介:  王艳珍:女,1991年生,硕士研究生,主要研究方向为锂离子电池负极材料 E-mail: wyz0614@tju.edu.cn|陈明鸣:通信作者,女,1971年生,教授,博士研究生导师,主要研究方向为新型炭材料与绿色电源技术 E-mail: chmm@tju.edu.cn
引用本文:    
王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials. Materials Reports, 2018, 32(3): 357-361.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.002  或          https://www.mater-rep.com/CN/Y2018/V32/I3/357
图1  (a)SiO2-500的扫描电镜图;(b)SiO2-500的透射电镜图;(c)SiO2-130/C复合材料的扫描电镜图;(d)SiO2-130/C的透射电镜图;(e)SiO2-130/C的线扫数据曲线(图(d)中线形所示区域);(f) SiO2-130/C的能谱分析及数据(图(d)中圆形所示区域)
图2  (a)SiO2-130/C在空气中的热重曲线和(b)SiO2-500与SiO2-130/C的XRD谱
图3  (a)SiO2-130/C与SiO2-500的CV曲线;(b)SiO2-130/C与SiO2-500的交流阻抗图;(c)SiO2-130/C的恒流充放电曲线;(d)SiO2-500与SiO2-130/C的倍率性能图
图4  SiO2-130/C的循环曲线
图5  SiO2-130/C充放电前后的交流阻抗图
1 Nguyen C C, Choi H, Song S W . Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries[J]. Journal of Electrochimica Society, 2013,160(6):A906.
2 Takezawa H, Iwamoto K, Ito S , et al. Electro-chemical behaviors of nonstoichiometric silicon subo-xides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries[J]. Journal of Power Sources, 2013,244:49.
3 Li X F, Dhanabalan A, Meng X B , et al. Nanoporous tree-like SiO2 films fabricated by sol-gel assisted electrostatic spray deposition[J]. Microporous and Mesoporous Materials, 2012,151:488.
4 Sasidharan M, Liu D N, Gunawardhana D , et al. Synjournal, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres[J]. Journal of Materials Chemistry, 2011,21(36):13881.
5 Lv P, Zhao H, Wang J , et al. Facile preparation and electrochemical properties of amorphous SiO2/C compo-site as anode material for lithium ion batteries[J]. Journal of Power Sources, 2013,237:291.
6 Li M, Li J, Li K , et al. SiO2/Cu/polyacrylonitrile-C composite as anode material in lithium ion batteries[J]. Journal of Power Sources, 2013,240:659.
7 Guo B K, Shu J, Wang Z X , et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communication, 2008,10(12):1876.
8 Yao Y, Zhang J, Xue L , et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011,196(23):10240.
9 Jiao M L, Liu K L, Shi Z Q , et al. SiO2/carbon composite microspheres with hollow core-shell structure as high stability electrode for lithium ion batteries[J]. Chemelectrochem, 2017,4(3):542.
10 Cao X, Chuan X, Li S , et al. Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2015,33(2):110.
11 Meng J K, Cao Y, Suo Y , et al. Facile fabrication of 3D SiO2@graphene aerogel compo-sites as anode material for lithium ion batteries[J]. Electrochimica Acta, 2015,176:1001.
12 Wu X, Shi Z Q, Wang C Y , et al. Nanostructured SiO2/C compo-sites prepared via electrospinning and their electrochemical properties for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2015,746:62.
13 Wang J . Study on the structure of amphiphilic carbon-aceous mate-rial and its applications in electrode materials[D]. Tianjin:Tianjin University, 2010(in Chinese).
13 王瑨 . 两亲性炭材料的结构及其在电极材料领域应用的研究[D]. 天津:天津大学, 2010.
14 Chen M M, Zhang X Y, Wang L , et al. Effects of amphiphilic carbonaceous nanomaterial on the synjournal of MnO2 and its energy storage capability as an electrode material for pseudocapacitors[J]. Industrial & Engineering Chemistry Research, 2014,53(27):10974.
15 Wang J, Chen M M, Wang C Y , et al. Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-perfor-mance electric double-layer capacitors[J]. Journal of Power Sources, 2011,196(1):550.
16 Favors Z, Wang W, Bay H H , et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific Reports, 2014,4:4605.
17 Liu C, Li F, Ma L P , et al. Advanced materials for energy storage[J]. Advanced Materials, 2010,22:E28.
18 Li H H, Wu X L, Sun H Z , et al. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance[J]. Journal of Physical Chemistry C, 2015,119(7):3495.
[1] 何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed