Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 362-367    https://doi.org/10.11896/j.issn.1005-023X.2018.03.003
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
钴盐阴离子基团对Co-N-C催化剂电催化活性的影响
夏艺萌1,吴帅1,谭丰1,李卫1,魏清茂1,闵春刚2,杨喜昆1,2
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明理工大学分析测试研究中心,昆明 650093
Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts
Yimeng XIA1,Shuai WU1,Feng TAN1,Wei LI1,Qingmao WEI1,Chungang MIN2,Xikun YANG1,2
1 College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用化学氧化法在苯胺聚合过程中分别加入钴(Co)为Co2+而阴离子基团为(C2H3O2)22-、Cl22-、(NO3)22-、SO42-及C2O42-的乙酸钴、氯化钴、硝酸钴、硫酸钴、草酸钴等钴盐,合成出不同聚苯胺-钴(PANI-Co)配位聚合物。然后将PANI-Co聚合物作为前驱体在N2气氛中900 ℃热处理,制备出氮掺杂的Co-N-C碳基催化剂。采用SEM、XRD、XPS、Raman等手段分析Co-N-C催化剂的形貌、结构、化学组成及化学价态,并采用电化学方法测试了Co-N-C催化剂的电催化活性。结果表明,Co盐的阴离子基团对Co-N-C催化剂的形貌影响不大,但对Co-N-C催化剂中表面化学组成及含量、碳结构、石墨化程度以及Co的价态影响较大,并且Co盐的阴离子基团会影响Co-N-C催化剂的电催化活性,其氧还原(ORR)活性按照(C2H3O2)22->Cl22->(NO3)22->SO42->C2O42-顺序降低。含(C2H3O2)22-和Cl22-阴离子的钴盐制备的Co-N-C催化剂具有较高的ORR活性,这可能源于其较高含量的石墨氮和吡啶氮。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏艺萌
吴帅
谭丰
李卫
魏清茂
闵春刚
杨喜昆
关键词:  Co-N-C催化剂  聚苯胺  钴盐  阴离子基团  电催化活性    
Abstract: 

During the process of the aniline polymerization, bivalent cobalt salt with different anionic groups such as (C2H3O2)22-, Cl22-, (NO3)22-, SO42- and C2O42- were added into the solution and then different polyaniline cobalt (PANI-Co) coordination polymer were obtained. Finally, Co-N-C catalysts were prepared through pyrolysis of PANI-Co coordination polymer. The morphology, structure, chemical composition and chemical valence of the Co-N-C catalysts were characterized by scanning electron microscopy (SEM), X-ray spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectra (Raman). The electrocatalytic activity of Co-N-C catalysts were tested by electrochemical method. The results showed that the cobalt salt anionic groups had little impact on the morphology of Co-N-C catalysts, but had a great influence on the composition and surface chemistry of Co-N-C catalysts, carbon structure, degree of graphitization and the valence of Co. The cobalt salt anionic groups could affect the electrocatalytic activity of Co-N-C catalysts. The catalytic activities decreased as (C2H3O2)22->Cl22->(NO3)22->SO42->C2O42-. The Co-N-C catalysts prepared by cobalt salt containing (C2H3O2)22- and Cl22- anions had higher ORR activity, which possibly due to the higher content of graphite nitrogen and pyridine nitrogen.

Key words:  Co-N-C catalyst    polyaniline    cobalt salt    anionic groups    electrocatalytic activity
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  O643.36  
  TM911.48  
基金资助: 国家自然科学基金(21363012);国家自然科学基金(51374117)
作者简介:  夏艺萌:女,1994年生,硕士研究生,研究方向为燃料电池非铂碳基催化剂 E-mail: 809798360@qq.com
杨喜昆:通信作者,男,1963年生,教授级高工,研究方向为燃料电池催化剂 E-mail: yxk630@hotmail.com
引用本文:    
夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts. Materials Reports, 2018, 32(3): 362-367.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.003  或          https://www.mater-rep.com/CN/Y2018/V32/I3/362
图1  不同Co-N-C催化剂的XRD谱
图2  Co-N-C催化剂的SEM图:(a)Co-N-C/C4H6CoO4,(b)Co-N-C/CoCl2,(c)Co-N-C/CoSO4,(d)Co-N-C/Co(NO3)2,(e)Co-N-C/CoC2O4
Sample C 1s/% N 1s/% O 1s/% S 2p/% Co 2p/% Co 2p/eV
Co-N-C/C4H6CoO4 81.41 1.85 16.08 0.27 0.39 779.12
Co-N-C/CoCl2 81.72 2.39 15.13 0.15 0.61 779.25
Co-N-C/Co(NO3)2 83.21 2.34 13.98 0.08 0.39 779.65
Co-N-C/CoSO4 82.49 1.84 15.23 0.13 0.32 779.60
Co-N-C/CoC2O4 56.95 1.84 29.36 2.97 8.87 778.69
表1  Co-N-C的XPS表面元素分析结果
图3  Co-N-C催化剂N 1s的XPS谱
图4  Co-N-C催化剂Co 2p的XPS谱
图5  Co-N-C催化剂的拉曼光谱
图6  不同Co-N-C催化剂的CV曲线(电子版为彩图)
图7  不同Co-N-C催化剂的LSV曲线(电子版为彩图)
图8  不同Co-N-C催化剂在O2饱和的0.5 mol/L H2SO4溶液中于1 500 r/min转速下的计时电流曲线(电子版为彩图)
Sample n
Co-N-C/C4H6CoO4 3.54
Co-N-C/CoCl2 3.85
Co-N-C/Co(NO3)2 3.90
Co-N-C/CoSO4 3.63
Co-N-C/CoC2O4 2.21
表2  0.25 V电极电势下不同Co-N-C催化剂ORR过程的n值
图9  Co-N-C/C4H6CoO4在O2饱和的0.5 mol/L H2SO4溶液中不同转速下的LSV曲线及相应的K-L图(电子版为彩图)
1 Choi S I, Shao M, Lu N , et al. Synjournal and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction[J]. ACS Nano, 2016,8(10):126.
2 Wu Z, Lv Y, Xia Y , et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst[J]. Journal of the American Chemical Society, 2012,134(4):2236.
3 Bing L, Higgins D C, Xiao Q , et al. The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack[J]. Applied Catalysis B: Environmental, 2015,162:133.
4 Ohyagi S, Sasaki T . Durability of a PEMFC Pt-Co cathode catalyst layer during voltage cycling tests under supersaturated humidity conditions[J]. Electrochimica Acta, 2013,102(102):336.
5 Ma Y, Wang R, Wang H , et al. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction[J]. Physical Che-mistry Chemical Physics, 2014,16(8):3593.
6 Ding W, Li L, Xiong K , et al. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015,137(16):5414.
7 Proietti E, Jaouen F, Lefèvre M , et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011,2:416.
8 Jin H, Zhang H, Zhong H , et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science, 2011,4(9):3389.
9 Deng D, Yu L, Chen X , et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(1):371.
10 Hu Y, Jensen J O, Zhang W , et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014,53(14):3675.
11 Elumeeva K, Ren J, Antonietti M , et al. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J]. ChemElectroChem, 2015,2(4):584.
12 Wang Y, Nie Y, Wei Z D . Unification of catalytic oxygen reduction and hydrogen evolution reactions: Highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon[J]. Chemical Communications, 2015,51(43):8942.
13 Yang R, Stevens K, Dahn J R . Investigation of activity of sputtered transition-metal (TM)-C-N (TM=V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction[J]. Journal of the Electrochemical Society, 2008,155(1):B79.
14 Zhang H J, Jiang Q Z, Sun L , et al. 3D non-precious metal-based electrocatalysts for the oxygen reduction reaction in acid media[J]. International Journal of Hydrogen Energy, 2010,35(15):8295.
15 Lefèvre M, Proietti E, Jaouen F , et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324:71.
16 Peng H, Hou S, Dang D , et al. Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine[J]. Applied Catalysis B:Environmental, 2014,158:60.
17 Wu G, Johnston C M, Mack N H , et al. Synjournal-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells[J]. Journal of Materials Chemistry, 2011,21:11392.
18 Wu G, More K L, Johnston C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron,and cobalt[J]. Science, 2011,332:443.
19 殷敬华, 莫志深 . 现代高分子物理学[M]. 北京: 科学出版社, 2001.
20 Lin Senhao, Song Tingwen, Wan Honghe , et al. Ion beam effects in polyaniline films[J].Acta Polymerica Sinica, 1994(1):48(in Chinese).
20 林森浩, 荣廷文, 万洪和 , 等. 聚苯胺薄膜的离子束效应[J].高分子学报,1994(1):48.
21 Lu Min . Properties and applications of polyaniline[J].Journal of Functional Materials,1998(4):353(in Chinese).
21 陆珉 . 导电聚苯胺( PAn)的特性及应用[J].功能材料,1998(4):353.
22 Wang G, Jiang K, Xu M , et al. A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer[J]. Journal of Power Sources, 2014,266(10):222.
23 Faubert G, C?té R, Guay D , et al. Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1998,43(14-15):1969.
24 Casanovas J, Ricart J M, Rubio J , et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J]. Journal of the American Chemical Society, 1996,118(34):8071.
25 Wagner C D, Riggs W W, Davis L E , et al. Handbook of X-ray photoelectron spectroscopy[M]. USA:Perkin-Elmer corporation Physical Electronics Division, 1979: 219.
26 Cochet M, Maser W K, Benito AM , et al. Synjournal of a new polyaniline/nanotube composite: “In-situ” polymerisation and charge transfer through site-selective interaction[J]. Chemical Communications, 2001,16:1450.
27 Tuinstra F, Koenig J L . Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970,53(3):1126.
[1] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[2] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[3] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[4] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[5] 刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
[6] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[7] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[8] 冯江波, 王景平, 苑慧莹, 任秦博, 曹金安, 王学川. 不同粒径PANI/SiO2对环氧涂层防腐性能的影响[J]. 材料导报, 2021, 35(24): 24182-24188.
[9] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[10] 李晓白, 张雷鹏, 徐高平, 王博, 任子琛, 李垚. 基于PANI薄膜和Li+电解质的高光学调节性、循环稳定性的红外可变发射率器件[J]. 材料导报, 2021, 35(10): 10171-10175.
[11] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[12] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[13] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[14] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[15] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed