Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13005-13016    https://doi.org/10.11896/cldb.19030253
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
二维材料的合成方法及在催化领域应用的研究进展
杨晨1, 高凤雨1,2, 唐晓龙1,2, 易红宏1,2, 苗磊磊1, 于庆君1,2, 赵顺征1,2
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Review on the Synthesis Techniques of Two-dimensional Materials and Their Application in the Field of Catalysis
YANG Chen1, GAO Fengyu1,2, TANG Xiaolong1,2, YI Honghong1,2, MIAO Leilei1, YU Qingjun1,2, ZHAO Shunzheng1,2
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 9050KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 催化技术作为能源转化和环境污染治理领域的重要手段之一,对人类生存环境的改善发挥了巨大作用。随着实际应用需求的不断深化,研究人员致力于研发具有更大比表面积、更多高暴露反应位点和更短反应物/产物扩散途径等特性的新型催化材料。
低维纳米材料由于维度低,具有更丰富、特殊的物理和化学性质。其中二维(2D)纳米材料得益于其超薄的层状结构,具有较大的比表面积、高密度的表面活性位点、优异的光电和力学性能,以及易于界面传输和更短的扩散路径,非常适合被用作催化剂。近年来,研究者们致力于开发新型2D材料,积极研究2D材料在催化领域的独特优势,并优化其合成方法,以期尽早实现规模化应用。
目前,多种2D材料如石墨烯、黑磷(BP)、过渡金属硫化物(TMDs)、层状双金属氢氧化物(LDHs)等相继被发现。根据2D材料母体是否具有分层结构,选择自上而下的剥离法(微机械剥离法、氧化/还原剂插层辅助剥离法、机械力辅助剥离法、离子交换辅助剥离法及刻蚀辅助剥离法)或自下而上的可控合成策略(化学气相沉积法和湿化学法)应用于制备较高质量的超薄2D纳米材料。它们由于具有高度暴露的表面原子、优异的电子特性和力学性能,在能源催化反应如析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)、二氧化碳还原反应(CO2RR)等,以及环境催化反应如选择性催化还原反应(SCR)和对挥发性有机物(VOCs)的催化转化中展示出优异的催化性能。可通过表面修饰/功能化、相位工程等策略对2D材料性能进行微观精细调控,进一步优化其催化性能。
本文基于2D材料的分类、特性和应用领域,重点概述2D材料的结构特性和合成方法,详细总结其在催化领域的研究热点与进展并提出展望,以期为2D材料在催化领域的研究及应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晨
高凤雨
唐晓龙
易红宏
苗磊磊
于庆君
赵顺征
关键词:  二维材料  可控合成  催化反应  层状结构  催化性能    
Abstract: As one of the important means in the field of energy conversion and environmental pollution control, catalytic technology has played a huge role in improving the quality of human living environment. With the deepening of practical application requirements, researchers are committed to developing new catalytic materials with larger specific surface area, more highly exposed reaction sites and shorter reactant/product diffusion pathways.
Low-dimensional nanomaterials induce rich physical and chemical properties due to the reduction in dimensions. The two-dimensional (2D) nanomaterials benefit from theirs ultra-thin layered structure, large specific surface area, high density of surface active sites, excellent photoelectric and mechanical properties, and easy interface transmission and shorter diffusion, which is suitable for being used as a catalyst. In recent years, researchers have been working on the development of new 2D materials, actively researching the unique advantages of 2D materials in the field of catalysis, and optimizing their synthesis methods in order to achieve large-scale applications as early as possible.
At present, various 2D materials such as graphene, black phosphorus (BP), transition metal sulfides (TMDs), transition metal oxides (TMOs), and layered double hydroxides (LDHs) have been discovered. Top-down peeling method (micromechanical cleavage, oxidation/reduction-based intercalation-assisted exfoliation, mechanical force-assisted exfoliation, ion exchange-assisted exfoliation, and etching-assisted exfoliation) and bottom-up controllable synthesis strategies (chemical vapor deposition and wet chemical methods) were applied to prepare higher quality ultra-thin 2D nanomaterials according to whether the bulk materials have a layered structure. However, the research on 2D materials is still not mature enough. The yield and quality are far away from industrialization and commercialization. At the same time, micro-fine control of 2D material properties is needed to further optimize its catalytic performance. Due to their highly exposed surface atoms, excellent electronic properties and mechanical properties, in energy catalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), etc., and environmental catalytic reactions such as selective catalytic reduction (SCR) and catalytic conversion of volatile organic compounds (VOC) exhibit excellent catalytic performance. And the micro-fine control of 2D material properties can be carried out through surface modification/functionalization and phase engineering strategies to further optimize its catalytic performance.
Based on the classification, characteristics and application fields of 2D materials, this paper focuses on the structural characteristics and synthesis methods of 2D materials, summarizes their research hotspots and progress in the field of catalysis, and proposes prospects for the research and application of 2D materials in the field of catalysis.
Key words:  two-dimensional material    controllable synthesis    catalytic reaction    layered structure    catalytic performance
                    发布日期:  2020-06-24
ZTFLH:  X511  
基金资助: 国家自然科学基金(51808037;21806009);中国博士后科学基金(2019T120049;2018M631344)
通讯作者:  txiaolong@126.com   
作者简介:  杨晨,2018年6月本科毕业于华北水利水电大学环境与市政工程学院。现为北京科技大学能源与环境工程学院硕士研究生,在唐晓龙教授负责的大气污染控制与资源化学术梯队内进行研究。目前主要研究方向为二维金属氧化物脱硝催化剂。
唐晓龙,北京科技大学能源与环境工程学院教授、博士研究生导师。1999年本科毕业于昆明理工大学环境科学与工程学院,2006年在北京理工大学(与清华大学联合培养)获环境工程博士学位。研究方向为大气污染控制技术、工业废气资源化、环境功能材料等。主持国家自然科学基金面上项目、教育部“新世纪优秀人才支持计划”、中央高校基本科研业务费专项资金项目等多项科研项目。任国家重点研发计划项目、国家自然科学基金、中国博士后基金、北京市自然科学基金等多项目评审专家。发表论文200余篇,其中以第一或通讯作者在Chemical Enginee-ring JournalJournal of Hazardous MaterialUltrasonics SonochemistryJournal of Cleaner Production等SCI学术期刊发表研究论文90余篇,授权发明专利20余项,出版论著4部。曾获北京科技大学实验技术成果一等奖、中国有色金属工业科学技术二等奖、中国环境科学学会青年科技奖等奖励。
引用本文:    
杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
YANG Chen, GAO Fengyu, TANG Xiaolong, YI Honghong, MIAO Leilei, YU Qingjun, ZHAO Shunzheng. Review on the Synthesis Techniques of Two-dimensional Materials and Their Application in the Field of Catalysis. Materials Reports, 2020, 34(13): 13005-13016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030253  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13005
1 Liu E, Fu Y, Wang Y, et al. Nature Communications, 2015, 6, 6991.
2 Liu L, Feng Y, Shen Z. Physical Review B, 2003, 68(10), 104102.
3 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
4 Tan C, Zhang H. Nature Communications, 2015, 6, 7873.
5 Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005, 438(7065), 201.
6 Stoller M D, Park S, Zhu Y, et al. Nano Letters, 2008, 8(10), 3498.
7 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
8 Chen P, Li N, Chen X, et al. 2D Materials, 2017, 5(1), 014002.
9 Chhowalla M, Shin H S, Eda G, et al. Nature Chemistry, 2013, 5(4), 263.
10 Chhowalla M, Jena D, Zhang H. Nature Reviews Materials, 2016, 1(11), 16052.
11 Liu Z, Lau S P, Yan F. Chemical Society Reviews, 2015, 44(15), 5638.
12 Duan X, Wang C, Pan A, et al. Chemical Society Reviews, 2015, 44(24), 8859.
13 Li L, Yu Y, Ye G J, et al. Nature Nanotechnology, 2014, 9(5), 372.
14 Cao X, Tan C, Zhang X, et al. Advanced Materials, 2016, 28(29), 6167.
15 Huang K J, Zhang J Z, Shi G W, et al. Electrochimica Acta, 2014, 132, 397.
16 Meng K, Chen G, Thampi K R. Journal of Materials Chemistry A, 2015, 3(46), 23074.
17 Zhang H, Nai J, Yu L, et al. Joule, 2017, 1(1), 77.
18 Xu Y, Zhou M, Wang X, et al. Angewandte Chemie International Edition, 2015, 54(30), 8768.
19 Wang H, Lu X, Tucek J, et al. Electrochimica Acta, 2016, 211, 636.
20 Lu Q, Yu Y, Ma Q, et al. Advanced Materials, 2016, 28(10), 1917.
21 Pang J, Mendes R G, Bachmatiuk A, et al. Chemical Society Reviews, 2019, 48(1), 72.
22 Etman A S, Abdelhamid H N, Yuan Y, et al. ACS Omega, 2018, 3(2), 2193.
23 Wang K, Zhang L, Su Y, et al. Journal of Materials Chemistry A, 2018, 6(18), 8366.
24 Tyndall D, Nicolosi V, Jaskaniec S, et al. The Electrochemical Society, 2018, 59, 2157.
25 Jiao L, Wang Y, Jiang H L, et al. Advanced Materials, 2018, 30(37), 1703663.
26 Wang G, Tao J, Zhang Y, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25409.
27 Yuan W, Zhou Y, Li Y, et al. Scientific Reports, 2013, 3, 2248.
28 Song F, Hu X. Nature Communications, 2014, 5, 4477.
29 Zheng Y, Jiao Y, Zhu Y, et al. Journal of the American Chemical Society, 2017, 139(9), 3336.
30 Chen Q Q, Hou C C, Wang C J, et al. Chemical Communications, 2018, 54(49), 6400.
31 Bao J, Wang Z, Xie J, et al. Inorganic Chemistry Frontiers, 2018, 5(11), 2964.
32 Zhang H. ACS Nano, 2015, 9(10), 9451.
33 Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Science, 2013, 340(6139), 1226419.
34 Cooper D R, D’Anjou B, Ghattamaneni N, et al. ISRN Condensed Matter Physics, 2012, 2012, 1.
35 Williams J, DiCarlo L, Marcus C. Science, 2007, 317(5838), 638.
36 Zheng Y, Liu J, Liang J, et al. Energy & Environmental Science, 2012, 5(5), 6717.
37 Xue Y, Li Y, Zhang J, et al. Science China Chemistry, 2018, 61(7), 765.
38 Pumera M, Sofer Z. Advanced Materials, 2017, 29(21), 1605299.
39 Molle A. ECS Transactions, 2016, 75(5), 163.
40 Tao W, Kong N, Ji X, et al. Chemical Society Reviews, 2019, 48(11), 2891.
41 Bhimanapati G R, Lin Z, Meunier V, et al. ACS Nano, 2015, 9(12), 11509.
42 Chen S, Shi G. Advanced Mmaterials, 2017, 29(24), 1605448.
43 Khan A I, O’Hare D. Journal of Materials Chemistry, 2002, 12(11), 3191.
44 Xu Z P, Zhang J, Adebajo M O, et al. Applied Clay Science, 2011, 53(2), 139.
45 Lv L, Yang Z, Chen K, et al. Advanced Energy Materials, 2019, 9(17), 1803358.
46 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26(7), 992.
47 Gao G, Ding G, Li J, et al. Nanoscale, 2016, 8(16), 8986.
48 Tan C, Cao X, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225.
49 Snaith H J. Nature Materials, 2018, 17(5), 372.
50 Fujito H, Kunioku H, Kato D, et al. Journal of the American Chemical Society, 2016, 138(7), 2082.
51 Zhao M, Lu Q, Ma Q, et al. Small Methods, 2017, 1(1-2), 1600030.
52 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
53 Liao L, Peng H, Liu Z. Journal of the American Chemical Society, 2014, 136(35), 12194.
54 Novoselov K S, Geim A K, Morozov S, et al. Nature, 2005, 438(7065), 197.
55 Hummers W S, Offeman R E. Journal of the American Chemical Society, 1958, 80(6), 1339.
56 Shih C J, Vijayaraghavan A, Krishnan R, et al. Nature Nanotechnology, 2011, 6, 439.
57 Koike Y, Suematsu H, Higuchi K, et al. Solid State Communications, 1978, 27(6), 623.
58 Yin Y, Han J, Zhang Y, et al. Journal of the American Chemical Society, 2016, 138(25), 7965.
59 Zheng J, Zhang H, Dong S, et al. Nature Communications, 2014, 5, 2995.
60 Zeng Z, Yin Z, Huang X, et al. Angewandte Chemie International Edition, 2011, 50(47), 11093.
61 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008, 3(9), 563.
62 Coleman J N, Mustafa L, Arlene O N, et al. Science, 2011, 331(18), 568.
63 O’Neill A, Khan U, Nirmalraj P N, et al. The Journal of Physical Chemistry C, 2011, 115(13), 5422.
64 Guardia L, Paredes J I, Rozada R, et al. Rsc Advances, 2014, 4(27), 14115.
65 Bonaccorso F, Bartolotta A, Coleman J N, et al. Advanced Materials, 2016, 28(29), 6136.
66 Ciesielski A, Samorì P. Chemical Society Reviews, 2014, 43(1), 381.
67 Paton K R, Varrla E, Backes C, et al. Nature Materials, 2014, 13, 624.
68 Karagiannidis P G, Hodge S A, Lombardi L, et al. ACS Nano, 2017, 11(3), 2742.
69 Rizvi R, Nguyen E P, Kowal M D, et al. Advanced Materials, 2018, 30(30), 1800200.
70 Lei W, Mochalin V N, Liu D, et al. Nature Communications, 2015, 6, 8849.
71 Buzaglo M, Bar I P, Varenik M, et al. Advanced Materials, 2017, 29(8), 1603528.
72 Liu Z H, Ooi K, Kanoh H, et al. Langmuir, 2000, 16(9), 4154.
73 Sakai N, Fukuda K, Ma R, et al. Chemistry of Materials, 2018, 30(5), 1517.
74 Ma R, Sasaki T. Accounts of Chemical Research, 2014, 48(1), 136.
75 Ma R, Sasaki T. Advanced Materials, 2010, 22(45), 5082.
76 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
77 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials, 2017, 2, 16098.
78 Xuan J, Wang Z, Chen Y, et al. Angewandte Chemie International Edition, 2016, 55(47), 14569.
79 Naguib M, Unocic R R, Armstrong B L, et al. Dalton Transactions, 2015, 44(20), 9353.
80 Naguib M, Mashtalir O, Carle J, et al. ACS Nano, 2012, 6(2), 1322.
81 Yu J, Li J, Zhang W, et al. Chemical Science, 2015, 6(12), 6705.
82 Tang S, Wang H, Wang H S, et al. Nature Communications, 2015, 6, 6499.
83 Zhou J, Lin J, Huang X, et al. Nature, 2018, 556(7701), 355.
84 Hsu C C, Bagley J D, Teague M L, et al. Carbon, 2018, 129, 527.
85 Yan Z, Lin J, Peng Z, et al. ACS Nano, 2012, 6(10), 9110.
86 Yeh N C, Hsu C C, Bagley J D, et al. Nanotechnology, 2019, DOI:10.1088/1361-6528/aafdbf.
87 Gao S, Lin Y, Jiao X, et al. Nature, 2016, 529(7584), 68.
88 Sun Z, Liao T, Dou Y, et al. Nature Communications, 2014, 5, 3813.
89 Junfeng X, Hao Z, Shuang L, et al. Advanced Materials, 2013, 25(40), 5807.
90 Simon P, Bahrig L, Baburin I A, et al. Advanced Materials, 2014, 26(19), 3042.
91 Schliehe C, Juarez B H, Pelletier M, et al. Science, 2010, 329(5991), 550.
92 Chen X, Zhou Y, Liu Q, et al. ACS Applied Materials & Interfaces, 2012, 4(7), 3372.
93 Wu Z, Dong C, Li Y, et al. Angewandte Chemie International Edition, 2013, 52(38), 9952.
94 Wu Z, Liu J, Li Y, et al. ACS Nano, 2015, 9(6), 6315.
95 Huang X, Li S, Huang Y, et al. Nature Communications, 2011, 2, 292.
96 Cheng W, He J, Yao T, et al. Journal of the American Chemical Society, 2014, 136(29), 10393.
97 Wu X J, Huang X, Qi X, et al. Angewandte Chemie International Edition, 2014, 53(34), 8929.
98 Wu X J, Huang X, Liu J, et al. Angewandte Chemie International Edition, 2014, 53(20), 5083.
99 Sakamoto R, Hoshiko K, Liu Q, et al. Nature Communications, 2015, 6, 6713.
100 Tang G, Chen Y, Yin J, et al. Ceramics International, 2018, 44(5), 5336.
101 Benson J, Xu Q, Wang P, et al. ACS Applied Materials & Interfaces, 2014, 6(22), 19726.
102 Sofer Z, Sedmidubský D, Huber Š, et al. Angewandte Chemie, 2016, 128(10), 3443.
103 Ren X, Zhou J, Qi X, et al. Advanced Energy Materials, 2017, 7(19), 1700396.
104 Wang Z, Li Q, Xu H, et al. Nano Energy, 2018, 49, 634.
105 Zhao Y, Xin Z, Jia X, et al. Advanced Energy Materials, 2018, 8(18), 1703585.
106 Uosaki K, Elumalai G, Noguchi H, et al. Journal of the American Chemical Society, 2014, 136(18), 6542.
107 Zhang Z, Khurram M, Sun Z, et al. Inorganic Chemistry, 2018, 57(7), 4098.
108 Zeng S, Kar P, Thakur U K, et al. Nanotechnology, 2018, 29(5), 052001.
109 Chai G L, Qiu K, Qiao M, et al. Energy & Environmental Science, 2017, 10(5), 1186.
110 Zhao J, Chen Z. The Journal of Physical Chemistry C, 2015, 119(47), 26348.
111 Li H, Tsai C, Koh A L, et al. Nature Materials, 2015, 15, 48.
112 Liu R, Wang Y, Liu D, et al. Advanced Materials, 2017, 29(30), 1701546.
113 Lukowski M A, Daniel A S, Meng F, et al. Journal of the American Chemical Society, 2013, 135(28), 10274.
114 Luo Y, Li X, Cai X, et al. ACS Nano, 2018, 12(5), 4565.
115 Cui J, Peng Q, Zhou J, et al. Nanotechnology, 2019, 30(34), 345205.
116 Deng S, Meng T, Xu B, et al. ACS Catalysis, 2016, 6(9), 5807.
117 Yuan C, Wu H B, Xie Y, et al. Angewandte Chemie International Edition, 2014, 53(6), 1488.
118 Thirupathi B, Smirniotis P G. Journal of Catalysis, 2012, 288, 74.
119 Cai S, Zhang D, Shi L, et al. Nanoscale, 2014, 6(13), 7346.
120 Liu J, Wei Y, Li P Z, et al. ACS Catalysis, 2018, 8(5), 3865.
121 Ye J, Zhu X, Cheng B, et al. Environmental Science & Technology Letters, 2017, 4(1), 20.
122 Sun D, Le Y, Jiang C, et al. Applied Surface Science, 2018, 441, 429.
123 Zhang X, Junhui Y, Jing Y, et al. Applied Catalysis A, General, 2018, 566,104.
124 Hu W, He F, Chen X, et al. Journal of Nanoparticle Research, 2019, 21(1), 6.
125 Liu G, Tian Y, Zhang B, et al. Journal of Hazardous Materials, 2019, 367,568.
[1] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[2] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[3] 宋大凤, 雷宗坤, 曾小华. 添加Al对燃料电池阴极催化剂(Pt-Fe)/Pt合金微观组织及氧还原催化性能的影响[J]. 材料导报, 2018, 32(23): 4061-4066.
[4] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[5] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[6] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[7] 于长新,王发刚,尹凯俐,纪文义,刘新超,魏春城. 弱界面层方向性对层状ZrB2-SiC/石墨陶瓷的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2047-2050.
[8] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[9] 臧剑锋, 童磊, 叶镭, 喻研. 二维原子晶体材料中的各向异性研究概述*[J]. CLDB, 2017, 31(9): 15-25.
[10] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[11] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[12] 涂盛辉,林 立,骆中璨,刘 婷,杨昆忠,杜 军. Cu/Zn/Ce/ZSM-5分子筛的碱改性及催化性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 114-119.
[13] 惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
[14] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[15] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 99-112.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed