Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2047-2050    https://doi.org/10.11896/j.issn.1005-023X.2018.12.020
  材料研究 |
弱界面层方向性对层状ZrB2-SiC/石墨陶瓷的影响
于长新,王发刚,尹凯俐,纪文义,刘新超,魏春城
山东理工大学材料科学与工程学院,淄博 255049
Effect of the Directivity of Weak Interfacial Layer on the Laminated ZrB2-SiC/Graphite Ceramics
YU Changxin, WANG Fagang, YIN Kaili, JI Wenyi, LIU Xinchao, WEI Chuncheng
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049
下载:  全 文 ( PDF ) ( 2247KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用流延-叠层-热压烧结工艺制备层状ZrB2-SiC/石墨(ZrB2-SiC/G)陶瓷,研究了石墨弱界面层的方向性对其力学性能的影响;通过XRD、SEM等对层状ZrB2-SiC/G陶瓷的物相、形貌进行观察分析。结果表明:层状ZrB2-SiC/G陶瓷在平行方向上的弯曲强度为(382±25) MPa,略低于垂直方向的弯曲强度((429±30) MPa);平行方向的断裂韧性为(11.2±0.3) MPa·m1/2,比垂直方向的断裂韧性提高了75%。层状ZrB2-SiC/G陶瓷在平行方向上的断裂韧性的提高主要是由于石墨弱界面层对裂纹的偏转、分叉和脱层作用。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于长新
王发刚
尹凯俐
纪文义
刘新超
魏春城
关键词:  层状结构  ZrB2-SiC陶瓷  石墨弱界面层  方向性  力学性能    
Abstract: Laminated ZrB2-SiC/G graphite (ZrB2-SiC/G) ceramics were fabricated by tap-casting, stacking and hot-pressing sintering. The effect of directivity of weak graphite layer on the laminated ZrB2-SiC/G ceramics was investigated. The phase composition and morphology of the laminated ZrB2-SiC/G ceramics was analyzed and observed by XRD and SEM, respectively. The results show that the flexural strength in the parallel direction of the laminated ZrB2-SiC/G ceramics is (382±25) MPa, which is slightly lower than that of (429±30) MPa in the perpendicular direction. The fracture toughness in the parallel direction is (11.2±0.3) MPa·m1/2, which increases by 75% compared with that in the perpendicular direction. The increase of fracture toughness of the laminated ZrB2-SiC/G ceramics in the parallel direction is mainly attributed to the crack deflection, branching and delamination caused by graphite layer.
Key words:  laminated structure    ZrB2-SiC ceramic    weak graphite layer    directivity    mechanical properties
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TQ174.1  
基金资助: 山东省自然科学基金(ZR2014JL032);山东省高等学校科技项目(J16LA05)
作者简介:  于长新:男,1991年生,硕士研究生,研究方向为先进陶瓷基复合材料 E-mail:yuchangxin2010@163.com 王发刚:通信作者,男,1965年生,博士,教授,博士研究生导师,研究方向为先进陶瓷基复合材料 E-mail:yuchangxin2010@163.com
引用本文:    
于长新,王发刚,尹凯俐,纪文义,刘新超,魏春城. 弱界面层方向性对层状ZrB2-SiC/石墨陶瓷的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2047-2050.
YU Changxin, WANG Fagang, YIN Kaili, JI Wenyi, LIU Xinchao, WEI Chuncheng. Effect of the Directivity of Weak Interfacial Layer on the Laminated ZrB2-SiC/Graphite Ceramics. Materials Reports, 2018, 32(12): 2047-2050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.020  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2047
1 Guo Q L, Li J G, Shen Q, et al. Toughening of ZrB2-SiC ceramics with the microstructure ZrB2/Zr-Al-C fibrous monolith[J]. Scripta Materialia,2012,66(5):296.
2 Zou X, Fu Q G, Liu L, et al. ZrB2-SiC coating to protect carbon/carbon composites against ablation[J]. Surface & Coatings Techno-logy,2013,226(11):17.
3 Yan Z Y, Ma Z, Liu L, et al. The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J]. Journal of the European Ceramic Society,2014,34(10):2203.
4 Li L, Li H J, Shen Q L, et al. Oxidation behavior and microstructure evolution of SiC-ZrB2-ZrC coating for C/C composites at 1 673 K[J]. Ceramics International,2016,42(11):13041.
5 Wang H L, Fan B B, Feng L, et al. The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering[J]. Ceramics International,2012,38(6):5015.
6 Wang Lingling, Fang Guodong, Liang Jun. High temperature tensile damage behavior of ZrB2-based ultra-high temperature ceramic composites[J]. Acta Materiae Compositae Sinica,2015,32(1):125(in Chinese).
王玲玲,方国东,梁军.ZrB2基超高温陶瓷复合材料的高温拉伸损伤行为[J].复合材料学报,2015,32(1):125.
7 Hu P, Guo L W, Wang Z. Oxidation mechanism and resistance of ZrB2-SiC composites[J]. Corrosion Science,2009,51(11):2724.
8 He J B, Wang Y G, Luo L, et al. Oxidation behavior of ZrB2-SiC (Al/Y) ceramics at 1 700 ℃[J]. Journal of the European Ceramic Society,2016,36(15):3769.
9 Fu Jingying, Gao Dong, Zhang Yue, et al. Oxidation resistance performance of ZrB2-SiC ceramic matrix composites[J]. Rare Metal Materials and Engineering,2009,38(2):898(in Chinese).
付景莹,高栋,张跃,等.ZrB2-SiC陶瓷基复合材料抗氧化性能的研究[J].稀有金属材料与工程,2009,38(2):898.
10 Zuo Fengjuan, Cheng Laifei, Zhang Litong. Oxidation resistance of ZrB2-SiC multilayer ceramics[J]. Journal of the Chinese Ceramic Society,2012,40(8):1174(in Chinese).
左凤娟,成来飞,张立同.ZrB2-SiC多层陶瓷的抗氧化性[J].硅酸盐学报,2012,40(8):1174.
11 Bueno S, Baudin C. Layered materials with high strength and flaw tolerance based on alumina and aluminium titanate[J]. Journal of the European Ceramic Society,2007,27(2):1455.
12 Clegg W J, Kendall K, Alford N M N, et al. A simple way to make tough ceramics[J]. Nature,1990,347(6292):455.
13 Li Y Y, Li Q G, Wang Z. Microstructures and mechanical properties of lamina-ted ZrC-SiC composites with different SiC powders[J]. Ceramics International,2015,41(10):15255.
14 Xiang L Y, Cheng L F, Hou Y, et al. Fabrication and mechanical properties of laminated HfC-SiC/BN ceramics[J]. Journal of the European Ceramic Society,2014,34(15):3635.
15 Zuo F J, Cheng L F, Xiang L Y, et al. Ablative property of lamina-ted ZrB2-SiC ceramics under oxyacetylene torch[J]. Ceramics International,2013,39(4):4627.
16 Wei C C, Zhang X H, Hu P, et al. Microstructure and mechanical properties of laminated ZrB2-SiC ceramics with ZrO2 interface layers[J]. International Journal of Refractory Metals and Hard Materials,2012,30(1):173.
17 Lv Z H, Jiang D L, Zhang J X, et al. ZrB2-SiC laminated ceramic composites[J]. Journal of the European Ceramic Society,2012,32(7):1435.
18 Wei C C, Zhang X H, Li S. Laminated ZrB2-SiC/graphite ceramics with simultaneously improved flexural strength and fracture toughness[J]. Ceramics International,2014,40(3):5001.
19 Wei Chuncheng, Ye Changshou, Liu Xiaoyan. Mechanical properties and microstructure of highly oriented graphite matrix composites[J]. Journal of Synthetic Crystals,2015,44(8):2298(in Chinese).
魏春城,叶长收,刘晓燕.高取向度石墨基复合材料力学性能及微观结构研究[J].人工晶体学报,2015,44(8):2298.
20 Zhang X, Wang Z, Sun X, et al. Effect of graphite flake on the mechanical properties of hot pressed ZrB2-SiC ceramics[J]. Materials Letters,2008,62(28):4360.
21 Wu H T, Zhang W G. Fabrication and properties of ZrB2-SiC-BN machinable ceramics[J]. Journal of the European Ceramic Society,2010,30(4):1035.
22 Zou J, Zhang G J, Hu C F, et al. Strong ZrB2-SiC-WC ceramics at 1 600 ℃[J]. Journal of the American Ceramic Society,2012,95(3):874.
23 Xu Y D, Cheng L F, Zhang L T. Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J]. Carbon,1999,37(8):1179.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed