Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3358-3367    https://doi.org/10.11896/j.issn.1005-023X.2018.19.010
  无机非金属及其复合材料 |
BiVO4基纳米异质结光催化材料的研究进展
董虹星1,刘秋平2,贺跃辉3
1 杭州科技职业技术学院机电工程学院,杭州311402;
2 浙江工业大学化学工程学院,杭州310014;
3 中南大学粉末冶金研究院,长沙 410083
Progress in BiVO4 based Heterojunction Photocatalyst
DONG Hongxing1, LIU Qiuping2, HE Yuehui3
1 College of Electromechanical Engineering, Hangzhou Polytechnic, Hangzhou 311402;
2 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014;
3 Powder Metallurgy Research Institute, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2585KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 BiVO4纳米异质结光催化剂因稳定性能好、无毒、禁带宽度小、在水溶液中具有高析氧活性等,成为当前研究的热点之一。本文综述了现阶段BiVO4纳米异质结材料的研究进展,着重介绍了BiVO4纳米异质结材料的类型、结构特点,并根据其结构阐述了电子-空穴的移动机理。同时,阐述了BiVO4纳米异质结光催化材料在应用领域取得的成果。最后,对BiVO4纳米异质结材料的研究方向进行了展望,期望能为研发具有优异光催化性能的BiVO4异质结提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董虹星
刘秋平
贺跃辉
关键词:  异质结  BiVO4  光催化性能  改性  核壳结构    
Abstract: Currently, BiVO4-based heterojunction photocatalysts have become one of the most popular research subjects due to their good stability, non-toxicity, narrow band gap, high oxygen evolution activity in aqueous solution and so forth. In this paper, the research progress of BiVO4-based heterojunction materials is reviewed. The types and structural characteristics of BiVO4-based heterojunction materials are introduced with emphases, and the mechanism of electron-hole migration according to the structure is expounded. Meanwhile, the application achievements of BiVO4-based heterojunction photocatalytic materials are elaborated. The research direction of BiVO4-based heterojunction materials is prospected, which is expected to provide a reference for the development of BiVO4-based heterostructures with excellent photocatalytic properties.
Key words:  heterojunction    BiVO4    photocatalytical properties    modification    core-shell structure
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TQ323.8  
基金资助: 浙江省自然科学基金(LQ16E020002);杭州市131人才资助项目
作者简介:  董虹星:女,1981年生,博士,副教授,从事光电新材料方面的研究 ;刘秋平:通信作者,男,1980年生,博士研究生,研究方向为新型催化材料 E-mail:liuqiuping@zjut.edu.cn; 贺跃辉:通信作者,男,1962年生,博士研究生导师,教授,研究方向为新型材料 E-mail:yuehui@csu.edu.cn;
引用本文:    
董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
DONG Hongxing, LIU Qiuping, HE Yuehui. Progress in BiVO4 based Heterojunction Photocatalyst. Materials Reports, 2018, 32(19): 3358-3367.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.010  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3358
1 Mandi Han, Ting Sun, Pei Yun Tan, et al. m-BiVO4@γ-Bi2O3 core-shell p-n heterogeneous nanostructure for enhanced visible-light photocatalytic performance[J].RSC Advances,2013,3:24964.
2 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Review,2009,38:253.
3 Huang Z F, Pan L, Zou J J, et al. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress[J].Nanoscale,2014,6:14044.
4 Ding C M, Shi J Y, Wang D G, et al. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J].Physical Chemistry Chemical Physics,2013,15:4589.
5 Luan Y B, Jing L Q, Xie Y, et al. Exceptional photocatalytic activity of 001-facet-exposed TiO2 mainly depending on enhanced adsorbed oxygen by residual hydrogen fluoride[J].ACS Catalysis,2013,3:1378.
6 Xie Huidong, Wang Yunzhen, Yang Lei, et al. Research on photoca-talytic properties of doped BiVO4[J].Materials Review B:Research Papers,2012,26(11):79(in Chinese).
谢会东,王云珍,杨磊,等.掺杂钒酸铋的光催化性能研究[J].材料导报:研究篇,2012,26(11):79.
7 Ye H, Park H S, Bard A J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy[J].The Journal of Physical Chemistry C,2011,115:12464.
8 Wei Yongge, Chen Ying, Zhang Qiang, et al. Preparation and photocatalytic properties of RGO-BiVO4 composite[J].Journal of Synthetic Crystal,2013,42(6):1192(in Chinese).
韦永阁,陈英,张强,等.RGO-BiVO4复合材料的制备及其模拟太阳光光催化性能的研究[J].人工晶体学报,2013,42(6):1192.
9 Jo W J, Jang J W, Kong K, et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity[J].Angewandte Chemie-International Edition,2012,124:3201.
10 Shan Shuang, Yang Zhanxu. Preparation and performance of four angle star-like BiVO4/Bi2O3 catalysis[J].Chinese Journal of Inorganic Chemistry,2016,32(4):649(in Chinese).
单爽,杨占旭.四角星形BiVO4/Bi2O3催化剂的制备及性能[J].无机化学学报,2016,32(4):649.
11 Guo Zengcai, Li Ping, Hong Weiche, et al. One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity[J].Ceramics International,2016,42:4517.
12 Hyejin Jung, Sang Youn Chae, Changhwan Shin, et al. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation[J].ACS Applied Materials & Interfaces,2015,7:5788.
13 Ren L, Jin L, Wang J B, et al. Template-free synthesis of BiVO4 nanostructures: Ⅰ.Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light[J].Nanotechnology,2009,20:115603.
14 Xi G C, Ye J H. Synthesis of bismuth vanadate nanoplates with exposed (001) facets and enhanced visible-light photocatalytic properties[J].Chemical Communications,2010,46:1893.
15 Wang Z Q, Luo W J, Yan S C, et al. BiVO4 nano-leaves: Mild synthesis and improved photocatalytic activity for O2 production under vi-sible light irradiation[J].CrystEngComm,2011,13:2500.
16 Sun Y F, Wu C Z, Long R, et al. Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature[J].Chemical Communications,2009,30:4542.
17 Krishnan Rajeshwar, Norma R De Tacconi, Chenthamarakshan C R. Semiconductor-based composite materials: Preparation, properties, and performance[J].Chemistry of Materials,2001,13:2765.
18 Suk Joon Hong, Seungok Lee, Jum Suk Jang, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J].Energy Environmental Science,2011,4:1781.
19 Su Jinzhan, Guo Liejin, Bao Ningzhong, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting[J].Nano Letters,2011,11:1928.
20 Yuriy Pihosh, Van Turkevych, Kazuma Mawatari, et al. Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting[J].Small,2014,10:3692.
21 Mali Mukund G, Yoon Hyun, Kim Min-Woo. Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting[J].Applied Physics Letters,2015,106(15):151603.
22 Odling Gylen, Robertson Neil. BiVO4-TiO2 composite photocatalysts for dye degradation formed using the SILAR method[J].Chemphyschem,2016,17(18):2872.
23 Wang Shuyun, Li Wenjun, Chen Feiwu. Visible light-driven BiVO4/TiO2 composite photocatalysts: Preparation methods and photocatalytic performance[J].Australian Journal of Chemistry,2015,68(8):1268.
24 Li Yi, Zhu Jun, Chen Shuanghong. Semiconductor sensitized solar cells based on BiVO4-sensitized mesoporous SnO2 photoanodes[J].Journal of Nanoscience and Nanotechnology,2016,16(6):5719.
25 Zhou Lite, Zhao Chenqi, Binod Giri. High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes[J].Nano Letters,2016,16(6):3463.
26 Zhou Lite, Yang Yang, Zhang Jing, et al. Photoanode with enhanced performance achieved by coating BiVO4 onto ZnO-templated Sb-doped SnO2 nanotube scaffold[J].ACS Applied Materials Interfaces,2017,9:11356.
27 Singh Sonal, Sharma Rishabh, Joshi Girdhar. Formation of interme-diate band and low recombination rate in ZnO-BiVO4 heterostructured photocatalyst: Investigation based on experimental and theoretical studies[J].Korean Journal of Chemical Engineering,2017,34(2):500.
28 Peng Fengping, Ni Yaru, Zhou Qiang, et al. Construction of ZnO nanosheet arrays within BiVO4 particles on a conductive magnetically driven cilia film with enhanced visiblephotocatalytic activity[J].Journal of Alloys and Compounds,2017,690:953.
29 Xia Ligang, Bai Jing, Li Jinhua, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J].Applied Catalysis B: Environmental,2016,183:224.
30 Ponchio Chatchai, Yoshinori Murakami, Shin-Ya Kishioka, et al. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation[J].Electrochimica Acta,2009,54:1147.
31 Wang Rui, Bai Jing, Li Yunpo, et al. BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications[J].Nano Micro Letters,2017,9:14.
32 Hu Yin, Li Danzhen, Zheng Yi, et al. BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J].Applied Catalysis B: Environmental,2011,104:30.
33 Jia Q, Iwashina K, Kudo A. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation[J].Proceedings of The National Academy of Sciences of The United States of America,2012,109(29):11564.
34 Zhang Haifeng, Cheng Chuanwei. Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance[J].ACS Energy Letters,2017,2:813.
35 Joaquin Resasco, Hao Zhang, Nikolay Kornienko, et al. TiO2/BiVO4 nanowire heterostructure photoanodes based on type Ⅱ band alignment[J].ACS Central Science,2016,2:80.
36 Xie Mingzheng, Fu Xuedong, Jing Liqiang, et al. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting[J].Advanced Energy Materials,2014,4:1300995.
37 Yin Jiazhi, Huang Shaobin, Jian Zicong, et al. Fabrication of heterojunction SnO2/BiVO4 composites having enhance dvisible light photo catalystic activity[J].Materials Science in Semiconductor Processing,2015,34:198.
38 Segi Byun, Bumsoo Kim, Seokwoo Jeon. Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation[J].Journal of Materials Chemistry A,2017,5:6905.
39 Xie Mingzheng, Zhang Zemin,Han Weihua. Efficient hydrogen evolution under visible light irradiation over BiVO4 quantum decorated Screw-like SnO2 nanostructures[J].Journal of Materials Chemistry A,2017,5(21):10338.
40 Yongqi Liang, Toshiki Tsubota, Lennard P A Mooij, et al. Highly improved quantum efficiencies for thin film BiVO4 photoanodes[J].The Journal of Physical Chemistry C,2011,115:17594.
41 Dong Hongxing, Liu Qiuping, Li Chaochao, et al. Research progress in photocatalysis of one-dimensional ZnO nanowire prepared by solution phase synthesis[J].New Chemical Materials,2014,42(11):16(in Chinese).
董虹星,刘秋平,李超超,等.一维ZnO纳米材料的溶液法合成及光催化性能的研究现状[J].化工新型材料,2014,42(11):16.
42 Savio J A Moniz, Zhu Jun, Tang Junwang. 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage[J].Advanced Energy Materials,2014,4(10):1066.
43 Sonal Singha, Rishabh Sharma, Bodh Raj Mehta. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO4 leads to improved photocatalytic performance[J].Applied Surface Science,2017,41:321.
44 Jih-Sheng Yang, Jih-Jen Wu. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting[J].Nano Energy,2017,32:232.
45 Fu Xuedong, Xie Mingzheng, Luan Peng, et al. Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity[J].ACS Applied Materials Interfaces,2014,6:18550.
46 Kang C H, Jing L Q, Guo T, et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst[J].The Jounal of Physical Chemistry C,2009,113:1006.
47 Yu Changlin, Yang Kai, Yu C Jimmy, et al. Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation[J].Journal of Alloys and Compounds,2011,509:4547.
48 Su Juan, Zou X X, Li G D, et al. Macroporous V2O5 BiVO4 compo-sites: Effect of heterojunction on the behavior of photogenerated charges[J].The Jounal of Physical Chemistry C,2011,115:8064.
49 Natda Wetchakun, Saranyoo Chaiwichain, Burapat Inceesungvorn, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J].ACS Applied Materials Interfaces,2012,4:3718.
50 Da Silva M R, Scalvi L V A, Leao Neto Vanildo Souza. Dip-coating deposition of BiVO4/NiO p-n heterojunction thin film and efficiency for methylene blue degradation[J].Journal of Materials Science-Materials in Electronics,2015,26(10):7705.
51 Min Shixiong, Wang Fang, Jin Zhiliang, et al. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation[J].Superlattices and Microstructures,2014,74:294.
52 Xia Ligang, Bai Jing, Li Jinhua, et al. High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application[J].Applied Catalysis B: Environmental,2017,204:127.
53 Wang Wenzhong, Huang Xiangwei, Wu Shuang, et al. Preparation of p-n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity[J].Applied Catalysis B: Environmental,2015,134-135:293.
54 Kalithasan Natarajan, Hari C Bajaj, Rajesh J Tayade. Direct sunlight driven photocatalytic activity of GeO2/monoclinic-BiVO4 nanoplate composites[J].Solar Energy,2017,148:87.
55 Zhai Yongqing, Yin Yanjie, Liu Xiao, et al. Novel magnetically separable BiVO4/Fe3O4 photocatalyst: Synthesis and photocatalytic performance under visible-light irradiation[J].Materials Research Bulletin,2017,89:297.
56 Li Junqi, Cui Mingming, Guo Zhanyun, et al. Synthesis of dumb bell-like CuO-BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity[J].Materials Letters,2014,130:36.
57 Zhang Jin, Cui Hao, Wang Bing, et al. Preparation and characterization of fly ash cenospheres supported CuO-BiVO4 heterojunction composite[J].Applied Surface Science,2014,300:51.
58 Xiang Zhenbo, Wang Yi, Ju Peng. Facile fabrication of AgI/BiVO4 composites with enhanced visible photocatalytic degradation and antibacterial ability[J].Journal of Alloys and Compounds,2017,721:622.
59 Shan Lianwei, Liu Yuteng, Bi Jingjing. Enhanced photocatalytic acti-vity with a heterojunction between BiVO4 and BiOI[J].Journal of Alloys and Compounds,2017,721:784.
60 Wang Qizhao, He Jijuan, Shi Yanbiao. Synthesis of MFe2O4 (M=Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity[J].Applied Catalysis B: Environmental,2017,214:158.
61 Zhou F Q, Fan J C, Xu Q J, et al. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 gene-ration[J].Applied Catalysis B: Environmental,2017,201:77.
62 Han Bin, Liu Siqi, Xu Yijun, et al. 1D CdS nanowire-2D BiVO4 nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis[J].RSC Advances,2015,5(21):16476.
63 Osmando F Lopes, Kele T G Carvalho, André E Nogueira, et al. Controlled synthesis of BiVO4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light[J].Applied Catalysis B: Environmental,2016,188:87.
64 Sun Tingting, Cui Dongming, Ma Qian, et al. Synthesis of BiVO4/MWCNT/Ag@AgCl composite with enhanced photocatalytic performance [J].Journal of Physics and Chemistry of Solids,2017,111:190.
65 Song Lingjun, Pang Youyong, Zheng Yanjun, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J].Journal of Alloys and Compounds,2017,710:375.
66 Zhang Yaping, Li Weibing, Sun Zhiyong, et al. In-situ synthesis of heterostructured BiVO4/BiOBr core-shell hierarchical mesoporous spindles with highly enhanced visible-light photocatalytic performance[J].Journal of Alloys and Compounds,2017,713:78.
67 Li Jinhai, Wang Fei, Meng Lingjun, et al. Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal[J].Journal of Colloid and Interface Science,2017,485:116.
68 Patnaik S, Sahoo D P, Parida K. An overview on Ag modified g-C3N4 based nanostructrued materials for energy and environmental application[J].Renewable & Sustainalbe Energy Reviews,2018,82:1297.
69 Zhao Jie, Yan Jinghui, Jia Huaijie, et al. BiVO4/g-C3N4 composite visible-light photocatalyst for effective elimination of aqueous organic pollutants[J].Journal of Molecular Catalysis A: Chemical,2016,424:162.
70 Ou Man, Zhong Qin, Zhang Shule, et al. Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase[J].Journal of Alloys and Compounds,2015,626:401.
71 Zhou Dehui, Zhu Zhijia, Liu Baojiang. Solvothermal synthesis and characterization of a novel reduced graphene oxide (RGO)/BiVO4/SiO2 nanocomposites[J].Materials Letters,2016,185:32.
72 Dong Shuying, Cui Yanrui, Wang Yifei, et al. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater[J].Chemical Engineering Journal,2014,249:102.
73 Rie Saito, Yugo Miseki, Kazuhiro Sayama. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte[J].Chemical Communication,2012,48:3833.
74 Ji Hyun Baek, Byeong Jo Kim, Gill Sang Han, et al. BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell[J].ACS Applied Materials Interfaces,2017,9:1479.
75 Pratap M Rao, Lili Cai, Chong Liu, et al. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation[J].Nano Letters,2014,14:1099.
76 Liwu Zhang, Erwin Reisner, Jeremy J Baumberg. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoano-des for solar water oxidation[J].Energy Environmental Science,2014,7:1402.
77 Conrado Martinez Suarez, Simelys Hernández,Nunzio Russo. BiVO4 as photocatalyst for solar fuels production through watersplitting: A short review[J].Applied Catalysis A: General,2015,504:158.
78 Yan Lu, Zhao Wei, Liu Zhifeng. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting[J].Dalton Transactions,2016,45:11346.
79 Stolla T, Zafeiropoulos G, Genuita H, et al. Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes[J].Electrochemistry Communications,2017,82:47.
80 Zhang Kunfeng, Liu Yuxi, Deng Jiguang, et al. Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol[J].Applied Catalysis B: Environmental,2017,202:569.
81 Zhong M, Ding R, Lin H X, et al. Synthesis and anti-helicobacter pyloriactivity of pyridine derivatives[J].Journal of Chongqing University of Technology (Natural Science), 2017,31(5):105(in Chinese).
钟猛,丁锐,林华鑫,等.吡啶衍生物合成及抗幽门螺杆菌活性研究[J].重庆理工大学学报(自然科学版),2017,31(5):105.
82 Hui Ling Tan, Rose Amal, Yun Hau Ng. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review[J].Journal of Materials Che-mistry A,2017,5:16498.
83 Yiseul Park, Kenneth J Mcdonald, Kyoung-Shin Choi. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J].Chemical Society Reviews,2013,42:2321.
84 Yun Yuan, Huang Yuhong, Ma Fei, et al. Structural stability, band structure and optical properties of different BiVO4 phases under pressure[J].Journal of Materials Science,2016,51(14):6662.
85 Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J].Journal of Photoche-mistry and Photobiology C: Photochemistry Reviews,2010,11:179.
86 Zeng Qingyi, Li Jinhua, Li Linsen, et al. Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation[J].Applied Catalysis B: Environmental,2017,217:21.
87 Min-Woo Kim, Karam Kim, Tae Yoon Ohm, et al. Electrosprayed BiVO4 nanopillars coated with atomic-layer-deposited ZnO/TiO2 as highly efficient photoanodes for solar water splitting[J].Chemical Engineering Journal,2018,333:721.
88 Olivier Monfort, Dimitrios Raptis, Leonid Satrapinskyy, et al. Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode[J].Electrochimica Acta,2017,251:244.
89 Min-Woo Kim, Karam Kim, Tae Yoon Ohm, et al. Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting[J].Journal of Alloys and Compounds,2017,726:1138.
90 Li Houfen, Yu Hongtao, Quan Xie, et al. Improved photocatalytic performance of heterojunction by controlling the contact facet: High electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment[J].Advanced Functional Materials,2015,25:3074.
91 Ji Yuexia, Cao Jiafeng, Jiang Linqing, et al. G-C3N4/BiVO4 compo-sites with enhanced and stable visible light photocatalytic activity[J].Journal of Alloys and Compounds,2014,590:9.
92 Zhu Yunqing, Muhammad Wajid Shah, Wang Chuanyi. Insight into the role of Ti3+in photocatalytic performance ofshuriken-shaped BiVO4/TiO2-x heterojunction[J].Applied Catalysis B: Environmental,2017,203:526.
93 Mao Mengmeng, Chen Fang, Zheng Changcheng, et al. Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol[J].Journal of Alloys and Compounds,2016,688:1080.
94 Zhong D K, Choi S, Gamelin D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified:BiVO4[J].Journal of The American Chemical Society,2011,133:18370.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[2] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[3] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[9] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[10] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[11] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[12] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[13] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[14] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[15] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed