Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 42-49    https://doi.org/10.11896/j.issn.1005-023X.2017.015.007
  材料综述 |
亚微级氧化锌空心球的制备及其光催化性能研究进展*
鲍艳, 封彩萍
陕西科技大学轻工科学与工程学院,西安710021;
Progress in Submicrometric ZnO Hollow Spheres and Photocatalytic Properties
BAO Yan, FENG Caiping
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
下载:  全 文 ( PDF ) ( 1992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亚微级ZnO空心球由于具有密度低、比表面积大、结构规整、尺寸可控等优点及众多优异的物理化学性能,引起科研工作者的广泛关注。因此,探索简单易行、经济高效的亚微级ZnO空心球的制备方法成为关注的热点。结合课题组在亚微级ZnO空心球方面的研究进展和国内外在其制备过程中涌现出的新方法,如水热法、声化学法、超声辅助水热法、静电纺丝法和微波辐射法等,对中空ZnO的制备新技术进行了综述。同时,对这些方法的基本原理、特点、应用情况等进行了总结,并对中空ZnO的光催化性能进行了综述。最后,在此基础上对亚微级ZnO空心球的发展方向和前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍艳
封彩萍
关键词:  亚微级ZnO空心球  水热法  声化学法  静电纺丝法  微波辐射法  光催化性能    
Abstract: The submicrometric ZnO hollow spheres with low density, large specific surface area, well-defined structure, controllable size, and many other special physical and chemical properties, have attracted a great deal of attentions. Consequently, seeking simple, highly efficient and economical synthesis technique for submicrometric ZnO hollow spheres has been a focus of attention. Based on our previous study in the field of hollow ZnO and the predecessors work, a comprehensive overview of some novel preparation technologies of submicrometric ZnO hollow spheres, including hydrothermal method, sonochemical method, ultrasonic assisted hydrothermal method, electrostatic spinning and microwave irradiation are introduced in this paper. The mechanism, characteristics and applications of these techniques are also summarized. In addition, the photocatalytic performance of submicrometric ZnO hollow spheres is introduced. Besides, the research foreground of submicrometric ZnO hollow spheres is proposed briefly.
Key words:  submicrometric ZnO hollow spheres    hydrothermal method    sonochemical method    electrostatic spinning method    microwave irradiation method    photocatalytic properties
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TQ132  
基金资助: *新世纪优秀人才支持计划(NCET-13-0885);国家自然科学基金(21376145);陕西科技大学科研创新团队项目(TD12-03)
作者简介:  鲍艳:女,1981年生,博士,教授,博士研究生导师,研究方向为有机-无机杂化纳米材料的合成及应用 E-mail:baoyan0611@126.com
引用本文:    
鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
BAO Yan, FENG Caiping. Progress in Submicrometric ZnO Hollow Spheres and Photocatalytic Properties. Materials Reports, 2017, 31(15): 42-49.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.007  或          http://www.mater-rep.com/CN/Y2017/V31/I15/42
1 She X, Chen L, Velleman L, et al. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by eudragit for targeted drug delivery[J]. J Colloid Interface Sci,2015,445:151.
2 Mohamed R M, McKinney D, Kadi M W, et al. Cobalt/zinc oxide hollow spheres: Visible light nanophotocatalysts[J]. Ceram Int,2016,42(2):2299.
3 Wang Y, Zhu S, Chen X, et al. One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity[J]. Appl Surf Sci,2014,307:263.
4 Bera S, Pal M, Naskar A, et al. Hierarchically structured ZnO-graphene hollow microspheres towards effective reusable adsorbent for organic pollutant via photodegradation process[J]. J Alloys Compd,2016,669:177.
5 Wang L, Lou Z, Fei T, et al. Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties[J]. J Mater Chem,2012,22(11):4767.
6 Lai X, Halpert J E, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems[J]. Energy Environ Sci,2012,5(2):5604.
7 Gao L, He J. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coa-tings[J]. J Colloid Interface Sci,2013,396:152.
8 Xu S, Hessel C M, Ren H, et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energy Environ Sci,2014,7(2):632.
9 Zhang F, Li X, et al. Fabrication of α-Fe2O3/In2O3 composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light[J]. J Colloid Interface Sci,2015,457:18.
10 Sun C, Rajasekhara S, Chen Y, et al. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing pro-perties[J]. Chem Commun,2011,47(48):12852.
11 Hao S, Zhang B, Ball S, et al. Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries[J]. Mater Des,2016,92:160.
12 Liu S, Yu B, Zhang T. A novel non-enzymatic glucose sensor based on NiO hollow spheres[J]. Electrochim Acta,2013,102:104.
13 Zhang P, Ma X, Guo Y, et al. Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water[J]. Chem Eng J,2012,189:188.
14 He S, Li J, Wang J, et al. Facile synthesis and lithium storage performance of hollow CuO microspheres[J]. Mater Lett,2014,129:5.
15 Lo S S, Huang D. Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process[J]. Langmuir,2010,26(9):6762.
16 Bao Y, Wang C, Ma J. Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity[J]. Mater Des,2016,101:7.
17 Chen Z, Wang F, Zhang H, et al. Synthesis of uniform hollow TiO2 and SiO2 microspheres via a freezing assisted reverse microemulsion-templated sol-gel method[J]. Mater Lett,2015,151:16.
18 Bao Y, Shi C, Wang T, et al. Recent progress in hollow silica: Template synthesis, morphologies and applications[J]. Microp Mesop Mater,2016,227:121.
19 Wang D, Du S, Zhou X, et al. Template-free synthesis and gas sensing properties of hierarchical submicrometer ZnO hollow spheres[J]. Cryst Eng Comm,2013,5(37):7438.
20 Patrinoiu G, Tudose M, Calderón-Moreno J M, et al. A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties[J]. J Solid State Chem,2012,186:17.
21 Wang L, Ma C, Ru X, et al. Facile synthesis of ZnO hollow microspheres and their high performance in photocatalytic degradation and dye sensitized solar cells[J]. J Alloys Compd,2015,647:57.
22 Chen M, Ye C, Zhou S, et al. Recent advances in applications and performance of inorganic hollow spheres in devices[J]. Adv Mater,2013,25(37):5343.
23 Li H, Cui Y, Hong W, et al. Photocatalytic performance of Pr/In/Nd composite oxides synthesized by solid state reaction[J]. Ceram Int,2013,39(6):6583.
24 Serio S, Torge M E M, Coutinho M L, et al. Spectroscopic studies of anatase TiO2 thin films prepared by DC reactive magnetron sputtering[J]. Chem Phys Lett,2011,508(8):71.
25 Zhu S, Tian X, Chen J, et al. A facile approach to construct multiple structured ZnO crystals by trisodium citrate-assisted hydrothermal growth toward performance enhancement of dye-sensitized solar cells[J]. J Phys Chem C,2013,118(30):16401.
26 Bao Y, Wang C, Ma J. A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres[J]. Ceram Int,2016,42(8):10289.
27 Zang Z, Wen M, Chen W, et al. Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates[J]. Mater Des,2015,84:418.
28 Lan S, Liu L, Li R, et al. Hierarchical hollow structure ZnO: Synthesis, characterization, and highly efficient adsorption/photocatalysis toward Congo red[J]. Ind Eng Chem Res,2014,53(8):3131.
29 Zhang H, Xu C, Sheng P, et al. Synthesis of ZnO hollow spheres through a bacterial template method and their gas sensing properties[J]. Sens Actuators B: Chem,2013,181:99.
30 Zhao B, Shao G, Fan B, et al. Preparation and microwave absorption of porous hollow ZnO by CO2 soft-template[J]. Adv Powder Technol,2014,25(6):1761.
31 Kim S H, Olson T Y, Satcher J H, et al. Hierarchical ZnO structures templated with amino acid based surfactants[J]. Microp Mesop Mater,2012,151:64.
32 Patrinoiu G, Calderón-Moreno J M, Chifiriuc C M, et al. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route[J]. J Colloid Interface Sci,2016,462:64.
33 Zhang Y, Shi E W, Chen Z Z, et al. Fabrication of ZnO hollow nanospheres and “jingle bell” shaped nanospheres[J]. Mater Lett,2008,62(8):1435.
34 Matsuyama K, Mishima K, Kato T, et al. Preparation of submicrometer ZnO hollow spheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution[J].J Am Chem Soc,2010,49:8510.
35 Zhou Y, Li M, Wang Y, et al. Synthesis of sea urchin-like ZnO by a simple soft template method and its photoelectric properties[J]. Mater Sci Semicond Processing,2014,27:1050.
36 Zhou H, Fan T, Zhang D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J]. Microp Mesop Mater,2007,100(1):322.
37 Bao Y, Wang C, Ma J. Trisodium citrate as bridging and suppres-sing agent to control synthesis of ZnO hollow hierarchical microspheres and their photocatalytic properties[J]. Ceram Int,2016,42(1):1746.
38 Siddaramanna A, Thipperudraiah K V, Chandrappa G T. Simple non-basic solution route for the preparation of zinc oxide hollow spheres[J]. Physica E: Low-dimens Syst Nanostruct,2012,44(7):1346.
39 Guo W, Liu T, Sun R, et al. Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances[J]. Sens Actuators B: Chem,2013,178:53.
40 Sun H, Wang L, Chu D, et al. Facile template-free hydrothermal fabrication of ZnO hollow microspheres for gas sensing applications[J]. Ceram Int,2014,40(10):16465.
41 Yin M, Liu S. Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property[J]. Sens Actuators B: Chem,2014,197:58.
42 Zhang X, Zhao H, Tao X, et al. Sonochemical method for the pre-paration of ZnO nanorods and trigonal-shaped ultrafine particles[J]. Mater Lett,2005,59(14):1745.
43 Hu X L, Zhu Y J, Wang S W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods[J]. Mater Chem Phys,2004,88(2):421.
44 Bang J H, Suslick K S. Applications of ultrasound to the synthesis of nanostructured materials[J]. Adv Mater,2010,22(10):1039.
45 Pokhrel N, Vabbina P K, Pala N. Sonochemistry: Science and engineering[J]. Ultrason Sonochem,2016,29:104.
46 Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot[J]. J Am Chem Soc,1986,108(18):5641.
47 Suslick K S. Sonochemistry[J]. Science,1990,247(4949):1439.
48 Jia X, Fan H, Zhang F, et al. Using sonochemistry for the fabrication of submicrometer ZnO hollow spheres[J]. Ultrason Sonochem,2010,17(2):284.
49 He C X, Lei B X, Wang Y F, et al. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells[J]. Chemistry—A Eur J,2010,16(29):8757.
50 Nguyen D T, Kim K S. Structural evolution of highly porous/hollow ZnO nanoparticles in sonochemical process[J]. Chem Eng J,2015,276:11.
51 Ameta G, Pathak A K, Ameta C, et al. Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway[J]. J Mol Liquids,2015,211:934.
52 Abdelhamid H N. Ionic liquids for mass spectrometry: Matrices, separation and microextraction[J]. TrAC Trends Anal Chem,2015,77:122.
53 Kowsari E. Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst[J]. J Nanoparticle Res,2011,13(8):3363.
54 Ameen S, Akhtar M S, Seo H K, et al. An electrochemical sensing platform based on hollow mesoporous ZnO nanoglobules modified glassy carbon electrode: Selective detection of piperidine chemical[J]. Chem Eng J,2015,270:564.
55 Xie Q, Ma Y, Wang X, et al. Electrostatic assembly of sandwich-like Ag-C@ ZnO-C@ Ag-C hybrid hollow microspheres with excellent high-rate lithium storage properties[J]. ACS Nano,2016,10(1):1283.
56 Xie Q, Li J, Tian Q, et al. Template-free synthesis of zinc citrate yolk-shell microspheres and their transformation to ZnO yolk-shell nanospheres[J]. J Mater Chem,2012,22(27):13541.
57 Zhu C, Lu B, Su Q, et al. A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst[J]. Nanoscale,2012,4(10):3060.
58 Zhao X, Qi L. Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr (Ⅵ) removal[J]. Nanotechnology,2012,23(23):235604.
59 Li X, Wang C, Guo H, et al. Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors[J]. ACS Appl Mater Interfaces,2015,7(32):17811.
60 Zhang C, Yin L W, Zhang L Y, et al. Preparation and photocataly-tic activity of hollow ZnO and ZnO-CuO composite spheres[J]. Mater Lett,2012,67:303.
61 Lee W W, Chung W H, Lu C S, et al. A study on the degradation efficiency and mechanisms of ethyl violet by HPLC-PDA-ESI-MS and GC-MS[J]. Sep Purif Technol,2012,98:488.
62 Patrinoiu G, Tudose M, Calderón-Moreno J M, et al. A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties[J]. J Solid State Chem,2012,186:17.
63 Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ Sci Technol,2008,42(13):4902.
[1] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[2] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[3] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[4] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[5] 于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
[6] 李金涛, 吴玉会, 刘卓, 赵晶, 王生力. 水热合成一维α-MoO3纳米棒及其湿敏性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 34-37.
[7] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[8] 惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
[9] 付兵, 欧娅, 刘欢, 顾曼琦, 陈卓, 杨锦瑜. Ba2+共掺杂YPO4∶Tb3+荧光材料的水热合成与荧光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 16-20.
[10] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[11] 智新, 彭同江, 孙红娟, 汪建德. 三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*[J]. 《材料导报》期刊社, 2017, 31(14): 16-21.
[12] 赵曼,肖仁贵,廖霞,刘飞. 水热法以磷铁制备电池级磷酸铁的研究*[J]. 材料导报编辑部, 2017, 31(10): 25-31.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed