Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 16-21    https://doi.org/10.11896/j.issn.1005-023X.2017.014.004
  材料研究 |
三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*
智新1, 彭同江2,3, 孙红娟3, 汪建德1
1 西南科技大学材料科学与工程学院, 绵阳 621010;
2 西南科技大学分析测试中心, 绵阳 621010;
3 西南科技大学固体废物处理与资源化教育部重点实验室, 绵阳 621010;
Preparation and Supercapacitive Performance of Three-dimensional Graphene/Poly(aniline-co-pyrrole) Composite
ZHI Xin1, PENG Tongjiang2,3, SUN Hongjuan3, WANG Jiande1
1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010;
2 Center of Forecasting and Analysis, Southwest University of Science and Technology, Mianyang 621010;
3 Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010;
下载:  全 文 ( PDF ) ( 2060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以制备的氧化石墨凝胶和苯胺-吡咯共聚物为原料,将二者进行混合超声分散,再以其混合分散液为前驱体,采用一步水热法制得三维石墨烯/苯胺-吡咯共聚复合物(3DAP)。利用X射线衍射(XRD)、拉曼光谱(Raman)、傅里叶变换红外(FT-IR)光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等研究了复合物的结构、形貌及电化学性能。结果表明:3DAP拥有丰富的三维多孔网状结构,并且颗粒状的苯胺-吡咯共聚物能够均匀地分布于孔隙间;作为电极材料,该复合物在0.5 A·g-1电流密度下比电容可达628.5 F·g-1,即使在大电流密度(20 A·g-1)条件下仍可高达384 F·g-1,且在1 A·g-1电流密度下经过1 000次的充放电循环后比容量保持率高达86.1%,表现出良好的倍率特性和循环稳定性,其超级电容性能远优于单纯的石墨烯以及苯胺-吡咯共聚物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
智新
彭同江
孙红娟
汪建德
关键词:  氧化石墨烯  水热法  苯胺-吡咯共聚物  多孔网状结构  超级电容性能    
Abstract: Three-dimensional graphene/poly(aniline-co-pyrrole) composite(3DAP) was prepared by one-step hydrothermal method using a suspension of graphene oxide and poly(aniline-co-pyrrole) as precursor. X-ray diffraction(XRD), Raman spectroscopy(Raman), Fourier transform infrared spectra(FT-IR), scanning electronic microscopy(SEM), transmission electron microscope(TEM) and electrochemical measurements were performed to investigate the structure, morphology and supercapacitive performance of the composite. The result showed that 3DAP presented three dimensional structure and granular poly(aniline-co-pyrrole) were dispersed in the pores uniformly. The capacities reached 628.5 F·g-1 and 384 F·g-1 at 0.5 A·g-1 and 20 A·g-1. The retention rate was found to be 86.1% after 1 000 times of charging and discharging cycle at 1 A·g-1. The results indicated that the composite showed good rate performance and cycle stability and its supercapacitive performance was far better than the 3DGS and poly(aniline-co-pyrrole).
Key words:  graphene oxide    hydrothermal method    poly(aniline-co-pyrrole)    porous network structure    supercapacitive performance
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  O613.71  
  O646.1+6  
基金资助: *国家自然科学基金(41272051;U1630132);西南科技大学博士基金(11ZX7135);西南科技大学研究生创新基金(16ycx023)
作者简介:  智新:女,1991年生,硕士研究生,研究方向为石墨烯基纳米复合材料的制备及其电化学性能 E-mail:xinzhi8794@foxmail.com彭同江:通讯作者,男,1958年生,教授,博士研究生导师,研究方向为新型纳米材料 E-mail:tjpeng@swust.edu.cn
引用本文:    
智新, 彭同江, 孙红娟, 汪建德. 三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*[J]. 《材料导报》期刊社, 2017, 31(14): 16-21.
ZHI Xin, PENG Tongjiang, SUN Hongjuan, WANG Jiande. Preparation and Supercapacitive Performance of Three-dimensional Graphene/Poly(aniline-co-pyrrole) Composite. Materials Reports, 2017, 31(14): 16-21.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.004  或          http://www.mater-rep.com/CN/Y2017/V31/I14/16
1 Ramya R,Sivasubramanian R,Sangaranarayanan M V.Conducting polymers-based electrochemical supercapacitors-Progress and prospects[J].Electrochim Acta,2013,101:109.
2 Cao Y, Mallouk T E. Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays[J].Chem Mater,2008,20(16):5260.
3 Xu C,Sun J,Gao L.Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance[J].J Mater Chem,2011,21(30):11253.
4 Zhang J,Yu Y,Liu L,et al.Graphene-hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance[J].Nanoscale,2013,5(7):3052.
5 Gómez H,Ram M K,Alvi F,et al.Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors[J].J Power Sources,2011,196(8):4102.
6 Zhang H,Cao G,Wang Z,et al.Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability[J].Electrochem Commun,2008,10(7):1056.
7 Mavundla S E,et al. Physicochemical and morphological properties of poly(aniline-co-pyrrole)[J].J Mater Sci, 2010,45(12):3325.
8 Sari B,Talu M.Electrochemical copolymerization of pyrrole and aniline[J].Synthetic Metals,1998,94(2):221.
9 Xu P,et al.Morphology and physico-electrochemical properties of poly(aniline-co-pyrrole)[J].Synth Met,2009,159(5):430.
10 Liang B,Qin Z,Li T,et al. Poly(aniline-co-pyrrole) on the surface of reduced graphene oxide as high-performance electrode materials for supercapacitors[J].Electrochim Acta,2015,177:335.
11 Sahoo S,et al.Graphene/poly (aniline-co-pyrrole) nanocomposite:Potential candidate for supercapacitor and microwave absorbing applications[J].J Nanosci Nanotechnol,2015,15(9):6931.
12 Sharma A K, Bhardwaj P,Dhawan S K,et al.Oxidative synthesis and electrochemical studies of poly(aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor[J]. Adv Mater Lett, 2015,6(5):414.
13 Feng Mingzhu,Peng Tongjiang,Sun Hongjuan,et al.Effect of oxidation degree on structure and cation exchange capacity of graphite oxide[J].Chinese J Inorg Chem,2016,32(3):427(in Chinese).
冯明珠, 彭同江, 孙红娟,等.氧化程度对氧化石墨结构与阳离子交换容量的影响[J].无机化学学报,2016,32(3):427.
14 Chabi S,Peng C,Yang Z,et al.Three dimensional (3D) flexible graphene foam/polypyrrole composite: Towards highly efficient supercapacitors[J].RSC Adv,2015,5(6):3999.
15 Kane C L.Materials science:Erasing electron mass[J].Nature,2005,438(7065):168.
16 Zhang L,Zhang L,Wan M, et al. Polyaniline micro/nanofibers doped with saturation fatty acids[J]. Synth Met,2006,156(5):454.
17 Zhou C, Han J,Song G,et al.Fabrication of poly (aniline-co-pyrrole) hollow nanospheres with Triton X-100 micelles as templates[J].J Polym Sci A:Polym Chem, 2008,46(11):3563.
18 Dhibar S,Bhattacharya P,Hatui G,et al.Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials[J].J Alloys Compd,2015,625:64.
19 Lian P,Zhu X,Liang S,et al.High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries[J].Electrochim Acta,2011, 56(12):4532.
20 Tagowska M,Patys B,Jackowska K.Polyaniline nanotubules—Anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy[J]. Synth Met,2004,142(1):223.
21 Furukawa Y,Tazawa S,Fujii Y,et al. Raman spectra of polypyrrole and its 2,5-13 C-substituted and C-deuterated analogues in doped and undoped states[J].Synth Met,1988,24(4):329.
22 Yang Yonghui,Sun Hongjuan,Peng Tongjiang,et al.Synthesis and structural characterization of graphene by oxidation reduction[J].Chinese J Inorg Chem,2010,26(11):2083(in Chinese).
杨勇辉,孙红娟,彭同江,等.石墨烯的氧化还原法制备及结构表征[J].无机化学学报,2010,26(11):2083.
23 Cong H P,Ren X C,Wang P,et al.Flexible graphene-polyaniline composite paper for high-performance supercapacitor[J].Energy Environmental Sci,2013,6(4):1185.
24 Huang J,Kaner R B.Nanofiber formation in the chemical polymerization of aniline:A mechanistic study[J]. Angew Chem,2004,116(43):5941.
25 Cakmak G,Küçükyavuz Z,Küçükyavuz S.Conductive copolymers of polyaniline,polypyrrole and poly (dimethylsiloxane)[J]. Synth Met,2005,151(1):10.
26 Wang Jiande,Peng Tongjiang,Xian Haiyang,et al.Preparation and supercapacitive performance of three-dimensional reduced graphene oxide/polyaniline composite[J].Acta Phys Chim Sin,2015,31(1):90(in Chinese).
汪建德, 彭同江, 鲜海洋,等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报,2015,31(1):90.
27 Chen Yang, et al.Preparation and electrochemical performance of Ni(OH)2 nanowires/three-dimensional graphene composite materials[J].Acta Phys Chim Sin,2015,31(6):1105(in Chinese).
陈阳,等.氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J].物理化学学报,2015,31(6):1105
28 Mi H,Zhang X,Ye X,et al.Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors[J].J Power Sources,2008,176(1):403.
29 Zhang D D,Zhao D L,Yao R R, et al.Enhanced mechanical properties of ammonia-modified graphene nanosheets/epoxy nanocompo-sites[J].RSC Adv,2015,5(36):28098.30 Wang J D,Xian H Y,Peng T J,et al.Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supecapacitor[J]. RSC Adv,2015,5(18):13607.
31 Ning G,Li T,et al.Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors[J].Carbon,2013,54:241.
32 Zhu J,Chen S,Zhou H,et al.Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electroche-mical performance[J].Nano Res,2012,5(1):11.
33 Huang L,Chen D,Ding Y,et al.Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors[J].ACS Appl Mater Interfaces,2013,5(21):11159.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[3] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[4] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[5] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[6] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[7] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[8] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[9] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[10] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[11] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[12] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[13] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[14] 李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
[15] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed