Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 34-37    https://doi.org/10.11896/j.issn.1005-023X.2017.06.008
  材料研究 |
水热合成一维α-MoO3纳米棒及其湿敏性能研究
李金涛, 吴玉会, 刘卓, 赵晶, 王生力
河北地质大学实验实践教学中心, 石家庄 050031
Hydrothermal Synthesis of 1-D α-MoO3 Nanorods and Their
Humidity Sensing Properties
LI Jintao, WU Yuhui, LIU Zhuo, ZHAO Jing, WANG Shengli
Experimental Practising &
Teaching Center, Hebei GEO University, Shijiazhuang 050031
下载:  全 文 ( PDF ) ( 1381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法,以钼酸铵和硝酸为原料合成了一维纳米α-MoO3棒状材料,并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对其物相及形貌进行了表征。一维α-MoO3纳米棒直径为200~300 nm,长度为5~10 μm。一维α-MoO3纳米棒表现出良好的湿敏性能,所制得的传感器在100 Hz、11%~95%湿度范围内,其复阻抗-相对湿度关系在半对数坐标下有5个数量级的变化,线性度好。元件的恢复和响应时间较短,分别为3 s和35 s,元件的湿滞约为4% RH。利用器件在不同湿度下的阻抗图谱建立了相应的等效电路,分析其电导过程。结果表明,在低湿度范围内,器件传导主要依靠一维α-MoO3材料内少量的自由电子传导以及材料本身束缚电荷的极化;在高湿度范围内,吸附水分子的分解和极化所引起的离子导电占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金涛
吴玉会
刘卓
赵晶
王生力
关键词:  一维α-MoO3  纳米棒  水热法  湿敏    
Abstract: 1-D α-MoO3 nanorods were synthesized under hydrothermal conditions by using (NH4)6Mo7O24·4H2O and HNO3 as raw materials. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize phase and morphology of the samples. The width of the α-MoO3 nanorod was about 200-300 nm, and the length was about 5-10 μm. 1-D α-MoO3 nanorods showed good humility sensing properties. The curve of impedance vs. relative humility (RH) changed near five orders of magnitude with good linearity, when RH varied from 11% to 95% at 100 Hz. The response and recovery time of the sensor were about 3 s and 35 s, respectively. The maximum hysteresis was only 4% RH at 100 Hz. In order to explain the conduction process of the sensor, corresponding equivalent circuits were established by complex impedance plots of the device at various humidity ranges. In low RH range, the conduction process was dominated mainly by conduction (charge carriers) and polarization (bounded electrons) of the grains of 1-D α-MoO3 nanorods, while in high RH range, by decomposition and polarization of the absorbed water.
Key words:  1-D α-MoO3    nanorod    hydrothermal synthesis    humidity sensor
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  O649.4  
基金资助: 河北地质大学博士科研启动基金(BQ201501);国家级地学实验教学示范中心
作者简介:  李金涛:女,1987年生,博士,助理研究员,主要研究方向为纳米功能材料制备及其敏感性能,E-mail:lijintao575@126.com
引用本文:    
李金涛, 吴玉会, 刘卓, 赵晶, 王生力. 水热合成一维α-MoO3纳米棒及其湿敏性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 34-37.
LI Jintao, WU Yuhui, LIU Zhuo, ZHAO Jing, WANG Shengli. Hydrothermal Synthesis of 1-D α-MoO3 Nanorods and Their
Humidity Sensing Properties. Materials Reports, 2017, 31(6): 34-37.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.008  或          http://www.mater-rep.com/CN/Y2017/V31/I6/34
1 Rubinger C P L, Martins C R, De Paoli M A, et al. Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization [J]. Sens Actuators B,2007,123(1):42.
2 Li L Y, Dong Y F, Jiang W F, et al. High-performance capacitive humidity sensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517(2):948.
3 Fang Xiangyi, Wu Mingtang, Jiang Yun, et al. Manufacture and humidity sensitivity of porous SiO2 thick film humidity sensors [J]. Electron Compon Mater,1995,14(5):19(in Chinese).
方湘怡,武明堂,姜芸,等.多孔SiO2厚膜湿度传感器的制造及其湿敏特性[J].电子元件与材料,1995,14(5):19.
4 Yang Z, Zhang Z, Liu K, et al. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sen-sing applications [J]. J Mater Chem C,2015,3(26):6701.
5 Pascariu P, Airinei A, Olaru N, et al. Microstructure, electrical and humidity sensor properties of electrospun NiO-SnO2 nanofibers [J]. Sens Actuators B,2016,222:1024.
6 Wei G, Qin W, Zhang D, et al. Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route [J].J Alloys Compd,2009,481(1-2):417.
7 Sinaim H, Phuruangrat A, Thongtem S, et al. Synthesis and cha-racterization of heteronanostructured Ag nanoparticles/MoO3 nanobelts composites [J]. Mater Chem Phys,2012,132(2-3):358.
8 Li Y B, Bando Y, Golberg D, et al. Field emission from MoO3 nanobelts [J]. Appl Phys Lett,2002,81(26):5048.
9 Comini E, Yubao L, Brando Y, et al. Gas sensing properties of MoO3 nanorods to CO and CH3OH [J]. Chem Phys Lett,2005,407(4-6):368.
10 Bai S, Chen S, Chen L, et al. Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties [J]. Sens Actuators B,2012,174(11):51.
11 Wang Q, Sun J, Wang Q, et al. Electrochemical performance of α-MoO3-In2O3 core-shell nanorods as anode materials forlithium-ion batteries [J]. J Mater Chem A,2015,3(9):5083.
12 Wang Q, Wang Q, Zhang D, et al. Core-shell α-Fe2O3@α-MoO3 nanorods as lithium-ion battery anodes with extremely high capacity and cyclability [J]. Chem Asian J,2014,11(9):3299.
13 Fang L, Shu Y, Wang A, et al. Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures [J]. J Phys Chem C,2007,111(6):2401.
14 Jiang D, Wang Y, Wei W, et al. Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature [J]. RSC Adv,2015,5(24):18655.
15 Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J]. Appl Phys Lett,2002,81(25):4832.
16 Chithambararaj A, Bose A C. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure [J]. Beilstein J Nanotechnol,2011,2(2):585.
17 Jittiarporn P, Sikong L, Kooptarnond K, et al. Effects of precipitation temperature on the photochromic properties of h-MoO3 [J]. Ceram Int,2014,40(8):13487.
18 Wang Wendi, Xu Huayun, Liu Jinhua, et al. Hydrothermal synthesis of MoO3 nanobelts and their electrochemical characterization [J]. J Funct Mater,2006,37(3):434(in Chinese).
王文帝,徐化云,刘金华,等.MoO3纳米纤维电极材料的水热合成和电化学表征[J].功能材料,2006,37(3):434.
19 Kuang Q, Lao C, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire [J]. J Am Chem Soc,2007,129(19):6070.
20 Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu Rev Mater Res,2004,35(34):151.
21 Holc J, Sluncko J, Hrovat M. Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors [J]. Sens Actuators B,1995,26(1-3):99.
22 Wang J, Xu B K, Ruan S P, et al. Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium [J]. Mater Chem Phys,2003,78(3):746.
23 Wang J, Su M Y, Qi J Q, et al. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors [J]. Sens Actuators B,2009,139(2):418.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[3] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[4] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[5] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[6] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[7] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[8] 于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
[9] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[10] 付兵, 欧娅, 刘欢, 顾曼琦, 陈卓, 杨锦瑜. Ba2+共掺杂YPO4∶Tb3+荧光材料的水热合成与荧光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 16-20.
[11] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[12] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[13] 智新, 彭同江, 孙红娟, 汪建德. 三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*[J]. 《材料导报》期刊社, 2017, 31(14): 16-21.
[14] 赵曼,肖仁贵,廖霞,刘飞. 水热法以磷铁制备电池级磷酸铁的研究*[J]. 材料导报编辑部, 2017, 31(10): 25-31.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed