Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13131-13138    https://doi.org/10.11896/cldb.19060022
  金属与金属基复合材料 |
碲属线性巨磁阻材料研究进展
曹明星1,2, 马立文1,2, 席晓丽1,2, 王志宏1,2
1 北京工业大学,工业大数据应用技术国家工程实验室,北京 100124
2 北京工业大学材料科学与工程学院,教育部先进功能材料重点实验室,北京 100124
An Overview on Linear Giant Magnetoresistance Materials of Telluride
CAO Mingxing1,2, Ma Liwen1,2, XI Xiaoli1,2, WANG Zhihong1,2
1 National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China
2 Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Techno-logy, Beijing 100124, China
下载:  全 文 ( PDF ) ( 6628KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,具有巨磁阻性质的材料,因其电阻随施加的磁场而显著变化,是现代电子设备中的关键材料。巨磁电阻碲化物由于具有无法预见的大的非饱和磁阻、超高迁移率以及反常霍尔效应等特性,可以用于强磁场探测、信息记录领域以及磁阻器件等(例如计算机的硬盘驱动器),有着重要的科学意义和广阔的应用前景。
具有准二维特征、非平庸拓扑能带结构的金属碲属化合物,以及一维碲属银化物作为非饱和线性巨磁阻重要材料体系,表现出了优异的性质,被研究者重视。然而,目前该类材料仍存在一些问题,主要体现在:(1)合成方面。目前还未实现大规模生产高质量的大面积薄层、块体材料,这限制了其开发和应用。(2)性能与结构方面。巨磁阻、热电性能、压致超导、低能光吸收等优良特性已有研究,而通过掺杂等方法调节载流子浓度以提高巨磁阻性能还未被分析透彻。
近年来,研究者主要从亟待解决的制备和性能问题展开研究,取得了重大进展。通过采用自上而下的技术已经证明以低成本制备层状材料是可能的,而自下而上的制备技术目前应用较广,例如化学气相沉积、助熔剂法等一系列方法,可以制备具有少量缺陷的高质量材料。磁电阻性能方面,碲属线性巨磁阻材料具有的各向异性磁电阻强烈依赖于角度和温度,当磁场、电场与晶轴取向不同时,磁电阻数值方面有很大区别,该类材料在低温0.53 K、高磁场60 T条件下,具有高至1 300 000%的磁电阻。相结构方面,过渡金属碲属化合物在2H相或者T、T′和Td畸变中是较稳定的,并可以诱导可逆相变。低能电子结构方面,费米面附近的电子-空穴口袋的尺寸和数量实现完美补偿,可成为巨磁阻效应特征出现的原因。
本文以二维MoTe2、WTe2和一维Ag2Te材料为代表,综述了近年来碲属线性巨磁阻材料的化学制备方法,以及性能与结构之间的密切关系,对比并提出了不同维度的线性磁阻材料制备方法的优缺点,并利用晶体各向异性等材料设计与合成策略来实现化学制备。探讨了该类材料晶体的磁电阻性能和结构的关系,总结了其在光电应用方面的重要意义,并展望了可通过掺杂、改性以有望改善性能的方式来激发该类材料在电子器件方面潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
CAO Mingxing
Ma Liwen
XI Xiaoli
WANG Zhihong
关键词:  外尔半金属  二碲化钨  相变  二维材料  线性巨磁阻    
Abstract: In recent years, the resistance of materials with large magnetoresistance varies significantly with the applied magnetic field, which is a key factor in modern electronic equipment. Giant magnetoresistance telluride has unpredictable large unsaturated magnetoresistance and ultra-high migration. Characteristics such as rate and anomalous Hall effect can be used in strong magnetic field detection, information recording, and magnetoresistive devices, such as hard disk drives in computers, which have important scientific significance and broad application prospects.
The metal tellurium compound with quasi-two-dimensional features, non-planar topological band structure, and the one-dimensional tellurium silver compound as an important material of the unsaturated linear giant magnetoresistive material system have been paid attention to by researc-hers. However, at present, there are still some problems in the material, mainly reflected in: (ⅰ) synthesis. At present, large-scale production of high-quality large-area thin-layer and bulk materials has not been realized, which limits its development and application. (ⅱ) Performance and structure. Excellent properties such as giant magnetoresistance, thermoelectric properties, pressure-induced superconductivity, and low-energy light absorption have been studied. However, the carrier concentration is adjusted by doping and the like to improve the giant magnetoresistance performance has not been thoroughly analyzed.
In recent years, researchers have made significant progress in research and preparation of performance problems that have to be solved. It has been proven by the use of top-down techniques that it is possible to produce layered materials at low cost, while bottom-up techniques are currently widely used, such as chemical vapor deposition, flux method and other methods, which can be prepared with high-quality materials with few defects. In terms of magnetoresistance performance, the anisotropic magnetoresistance of tellurium linear giant magnetoresistive materials strongly depends on the angle and temperature. When the orientation of magnetic field, electric field and crystal axis are different, the value of magnetoresistance is very different. The magnetoresistance material is as high as 1 300 000% at a low temperature of 0.53 K and a high magne-tic field of 60 T. In terms of phase structure, Transition metal telluride is relatively stable in 2H phase or T, T′ and Td distortion, and can induce reversible phase transition. In terms of low-energy electronic structure, the size and number of electron-hole pockets near the fermi surface, which can be the main reason for explaining the main characteristics of the giant magnetoresistance effect.
In this paper, two-dimensional MoTe2, WTe2 and one-dimensional Ag2Te materials are represented. The chemical preparation methods of the linear giant magnetoresistance materials in the past years are reviewed, as well as the close relationship between properties and structures. The advantages and disadvantages of preparation methods of linear magnetoresistance materials with different dimensions are compared and proposed. We discuss using the design and synthesis strategy of materials such as crystal anisotropy to realize chemical preparation. The relationship between the magnetoresistance properties and the structure of crystals of this kind of materials is discussed. It summarizes its significance in optoelectronic applications. The potential applications of the material in electronic devices can be stimulated by doping and modification in a pro-mising way.
Key words:  Weyl semimetal    tungsten telluride    phase transformation    two-dimensional material    linear giant magnetoresistance
               出版日期:  2020-07-10      发布日期:  2020-06-24
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51621003);国家重点研发计划(2017YFB0305800);北京市教委科学技术项目(KM201810005009);北京市自然科学基金(2172010);国家工业大数据应用技术工程实验室建设项目(312000522303)
通讯作者:  maliwen@bjut.edu.cn   
作者简介:  曹明星,2017年7月毕业于北京工业大学,获工学学士学位。现为北京工业大学材料科学与工程学院硕士研究生,在王志宏教授、席晓丽教授、马立文副教授的指导下进行研究。目前主要研究领域为碲属线性巨磁阻材料的制备及性能。
马立文,北京工业大学材料科学与工程学院副教授、硕士研究生导师。2006年7月获中南大学冶金工程学士学位,2011年7月获中南大学冶金物理化学博士学位。目前主要从事的研究方向为金属二次资源分离回收理论与技术,包括废弃金属材料分离过程的理论、金属分离新技术及新型分离材料制备。承担国家863课题,参加国家自然科学基金、北京市自然科学基金、北京市科技计划课题等项目。发表学术论文20余篇,授权国家专利10余项、国际专利2项。
引用本文:    
曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
CAO Mingxing, Ma Liwen, XI Xiaoli, WANG Zhihong. An Overview on Linear Giant Magnetoresistance Materials of Telluride. Materials Reports, 2020, 34(13): 13131-13138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060022  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13131
1 Chung K H, Kim S N, Lim S H. Thin Solid Films, 2018, 650, 44.
2 Jin S, Tiefel T H, Mccormack M, et al. Science, 1994, 264, 413.
3 Ohuchi F S, Jaegermann W, Pettenkofer C. Langmuir, 1989, 5, 439.
4 Wilson J A, Yoffe A D. Advances in Physics, 1969, 18, 193.
5 Marseglia E A. International Reviews in Physical Chemistry, 1983, 3, 177.
6 Zhang Y, Raman N, Bailey J K, et al. The Journal of Chemical Physics, 1992, 96, 9098.
7 Mattheiss L F. Physical Review B, 1973, 8, 3719.
8 Zhang K, Zhang T, Cheng G, et al. ACS Nano, 2016, 10, 3852.
9 Li Y, Duerloo K N, Wauson K, et al. Nature Communications, 2016, 7, 10671.
10 Zhang H T, Luo X G, Wang C H, et al. Journal of Crystal Growth, 2004, 265, 558.
11 Lee S, In J, Yoo Y, et al. Nano Letters, 2012, 12, 419499.
12 Sun X, Dai J, Guo Y, et al. Nanoscale, 2014, 6, 8359.
13 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7, 699.
14 Song Y L, Li G W, Jin Y. Materials for Mechanical Engineering, 2011, 35(6), 49(in Chinese).
宋也黎,李国伟,晋跃. 机械工程材料, 2011, 35(6), 49.
15 Vadiraj A, Kamaraj M. Journal of Materials Engineering and Perfor-mance, 2010, 19, 166.
16 Bie Y, Grosso G, Heuck M, et al. Nature Nanotechnology, 2017, 12,1124.
17 Sarkar D, Xie X, Liu W, et al. Nature, 2015, 526,91.
18 Roy T, Tosun M, Cao X, et al. ACS Nano, 2015, 9,2071.
19 Chen J, Wu F. Applied Physics A, 2004, 78,989.
20 Rothschild A, Cohen S R, Tenne R. Applied Physics Letters, 1999, 75, 4025.
21 Yao Q, Zhu Y, Chen L, et al. Journal of Alloys and Compounds, 2009, 481, 91.
22 Keum D H, Cho S, Kim J H, et al. Nature Physics, 2015, 11, 482.
23 Zhou L, Xu K, Zubair A, et al. Journal of the American Chemical Society, 2015, 137, 11892.
24 Ali M N, Xiong J, Flynn S, et al. Nature, 2014, 514, 205.
25 Yi M, Shen Z. Journal of Materials Chemistry A, 2015, 3,11700.
26 Ruppert C, Aslan O B, Heinz T F. Nano Letters, 2014, 14, 6231.
27 Tan Q H, Song Q J, Zhang X, et al. In: The 18th National Conference on Light Scattering. Chengdu, 2015(in Chinese).
谭青海, 宋庆军, 张昕, 等. 第十八届全国光散射学术会议摘要文集. 第十八届全国光散射学术会议.成都,2015.
28 Jiang C, Liu F, Cuadra J, et al. Nature Communications, 2017, 8, 802.
29 Wang J, Luo X, Li S, et al. Advanced Functional Materials, 2017, 27, 1604799.
30 Lee C, Silva E C, Calderin L, et al. Scientific Reports, 2015, 5, 10013.
31 Woods J M, Shen J, Kumaravadivel P, et al. ACS Applied Materials & Interfaces, 2017, 9, 23175.
32 Ali M N, Schoop L, Xiong J, et al. Europhysics Letters, 2015, 110, 67002.
33 Liu Y, Quan X, Fan X, et al. Angewandte Chemie International Edition, 2015, 54, 6837.
34 Zheng F, Cai C, Ge S, et al. Advanced Materials, 2016, 28,4845.
35 Lee J, Ye F, Wang Z, et al. Nanoscale, 2016, 8, 7786.
36 Cunningham G, Lotya M, Cucinotta C S, et al. ACS Nano, 2012, 6, 3468.
37 Coleman J N, Lotya M, O′Neill A, et al. Science, 2011, 331, 568.
38 Mao D, Du B, Yang D, et al. Small, 2016, 12, 1489.
39 Yu P, Fu W, Zeng Q, et al. Advanced Materials, 2017, 29, 1701909.
40 Li F, Hu C, Xiong Y, et al. The Journal of Physical Chemistry C, 2008, 112, 16130.
41 Park J C, Yun S J, Kim H, et al. ACS Nano, 2015, 9, 6548.
42 Zhou L, Zubair A, Wang Z, et al. Advanced Materials, 2016, 28, 9526.
43 Zhou L, Xu K, Zubair A, et al. Journal of the American Chemical Society, 2015, 137, 11892.
44 Zhou L, Xu K, Zubair A, et al. Advanced Functional Materials, 2017, 27, 1603491.
45 Empante T A, Zhou Y, Klee V, et al. ACS Nano, 2017, 11,900.
46 Zhou J, Liu F, Lin J, et al. Advanced Materials, 2017, 29, 1603471.
47 Naylor C H, Parkin W M, Ping J, et al. Nano Letters, 2016, 16, 4297.
48 Sankar R, Narsinga Rao G, Muthuselvam I P, et al. Chemistry of Mate-rials, 2017, 29, 699.
49 Zhou Y, Reed E J. The Journal of Physical Chemistry C, 2015, 119, 21674.
50 Wang Y, He D W, Wang Y S, et al. China Science and Technology Information, 2018(15), 96(in Chinese).
王宇,何大伟,王永生,等. 中国科技信息, 2018(15), 96.
51 Kim D, Lee R, Kim S, et al. Journal of Alloys and Compounds, 2019, 789, 960.
52 Kim T, Joung D, Park J. Current Applied Physics, 2018, 18, 843.
53 Zhou H L, Wang J H, Lou S Y, et al. Chinese Science Bulletin, 2007, 52, 2357.
54 Beams R, Cançado L G, Krylyuk S, et al. ACS Nano, 2016, 10, 9626.
55 Zhou Q, Rhodes D, Zhang Q R, et al. Physical Review B, 2016, 94, 121101.
56 Yoo Y, Degregorio Z P, Su Y, et al. Advanced Materials, 2017, 29, 1605461.
57 Onishi S, Jha R, Miyake A, et al.. AIP Advances, 2018, 8, 101330.
58 邱俊,张芷铭. 中国专利, 201510090508. X.
59 Pan X, Pan Y, Jiang J, et al. Frontiers of Physics, 2017, 12, 127203.
60 Pan X, Chen X, Liu H, et al. Nature Communications, 2015, 6, 7805.
61 Xie S, Chen L, Zhang T, et al. Journal of Crystal Growth, 2017, 467,29.
62 Shi D, Wang G, Li C, et al. Vacuum, 2017, 138, 101.
63 Yu Y, Wang G, Qin S, et al. Carbon, 2017, 115, 526.
64 Sun Y, Fujisawa K, Terrones M, et al. Journal of Materials Chemistry C, 2017, 5, 11317.
65 Gao M, Zhang M, Niu W, et al. Applied Physics Letters, 2017, 111, 31906.
66 Kang D, Zhou Y, Yi W, et al. Nature Communications, 2015, 6, 7804.
67 Xu R, Husmann A, Rosenbaum T F, et al. Nature,1997, 390, 57.
68 Xiao Q, Liang Y, Liu Y, et al. Luminescence, 2018, 33, 181.
69 Chuprakov I S, Dahmen K H. Applied Physics Letters, 1998, 72, 2165.
70 Lee M, Rosenbaum T F, Saboungi M L, et al. Physical Review Letters, 2002, 88, 66602.
71 Thirupathaiah S, Jha R, Pal B, et al. Physical Review B, 2017, 95, 241105.
72 Thirupathaiah S, Jha R, Pal B, et al. Physical Review B, 2017, 96, 11.
73 Zandt T, Dwelk H, Janowitz C, et al. Journal of Alloys and Compounds, 2007, 442, 216.
74 Keum D H, Cho S, Kim J H, et al. Nature Physics,2015, 11, 482.
75 Lyu Y, Li X, Pang B, et al. Journal of Applied Physics, 2017, 122, 45102.
76 Yang J, Colen J, Liu J, et al. Science Advances, 2017, 3, 4949.
77 Kabashima S. Journal of The Physical Society of Japan, 1996, 21, 945.
78 Thoutam L R, Wang Y L, Xiao Z L, et al. Physical Review Letters, 2015, 115, 46602.
79 Sandoval S J, Yang D, Frindt R F, et al. Physical Review B, 1991, 44, 3955.
80 Duerloo K N, Li Y, Reed E J. Nature Communications, 2014, 5, 4214.
81 Ali M N, Xiong J, Flynn S, et al. Physics, 2014, 17, 213.
82 Pletikosic' I, Ali M N, Fedorov A V, et al. Physical review letters, 2014, 113, 216601.
83 Lyu H Y, Lu W J, Shao D F, et al. Europhysics Letters, 2015, 110, 37004.
84 Qi Y, Naumov P G, Ali M N, et al. Nature Communications, 2016, 7, 11038.
85 Johari P, Shenoy V B. ACS Nano, 2012, 6, 5449.
86 Naren J R G, Bai Y M H, Da L M, et al. Inner Mongolia Petrochemical Industry, 2013, 39(24), 4(in Chinese).
娜仁吉如嘎,白音孟和,达力玛,等. 内蒙古石油化工,2013, 39(24), 4.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[3] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[4] 张朝磊, 胡佳丽, 李戬, 苗红生, 刘雅政. 胀断连杆用非调质钢C70S6的材料特性及组织性能控制[J]. 材料导报, 2020, 34(Z1): 444-447.
[5] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[6] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[7] 杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
[8] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[9] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[10] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[11] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[12] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[13] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[14] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[15] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed