Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 99-112    https://doi.org/10.11896/j.issn.1005-023X.2017.013.013
  材料综述 |
冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展*
张勋, 刘书海, 肖华平
中国石油大学北京力学与储运工程学院,北京 102249
Applying Freeze-casting Technique to the Fabrication of Nacre-like Lamellar Structured Ceramic Composites: A State-of-the-art Review
ZHANG Xun, LIU Shuhai, XIAO Huaping
College of Mechanical and Transportation Engineering, China University of Petroleum Beijing, Beijing 102249
下载:  全 文 ( PDF ) ( 2678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 贝壳珍珠层是一种天然的层状结构复合材料,类似“砖和泥”的软硬相交替的层状分级组装结构赋予其优良的力学性能。通过对贝壳的珍珠层进行仿生研究,人们已利用不同技术如冷冻铸造技术等,制备了一系列仿生高强超韧层状复合材料,并且这些材料在航空航天、军事、民用及机械工程等领域表现出广阔的应用前景。首先介绍了贝壳珍珠层的结构性能,并对其断裂机制进行了阐述;然后综合介绍了冷冻铸造技术的发展历程、作用机理、控制因素、装置设计和总体工艺流程。在此基础上,对制备仿贝壳层状结构陶瓷复合材料的表观密度、多孔陶瓷的孔隙率进行介绍,综述了多孔陶瓷的性能、陶瓷/金属层状结构复合材料以及陶瓷/聚合物层状结构复合材料的特点和应用,最后分析和总结了在研究仿贝壳层状结构陶瓷复合材料过程中出现的问题,并对该复合材料的未来发展趋势做了一定的预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勋
刘书海
肖华平
关键词:  冷冻铸造技术  层状结构  仿生陶瓷  复合材料  贝壳珍珠层    
Abstract: Shell nacre is a natural layered composite and has a layered hierarchical assembly structure similar to the “brick and mortar” structure with the alternation of hard and soft phase, which endows it with excellent mechanical properties. Through the bionic study of shell nacre, people have used different technologies(such as freeze-casting technology) to prepare a series of bionic and layered composite materials with high strength and toughness, which show broad application prospects in aerospace, military, civil use, mechanical engineering and other fields. The performance and facture mechanism of shell nacre structure are reviewed firstly. Then the development process, mechanism, control parameters, device design and overall processing steps of freeze-casting technology are introduced. On this basis, the stability, apparent density and porosity of porous ceramics, used for preparing bionic and la-yered composite materials, is introduced. Meanwhile, the characteristics and applications of porous ceramics, ceramic/metal layered composites and ceramic/polymer layered composites are reviewed. Lastly, the analysis and summary of problems appeared in the preparation of ceramic with nacre-like lamellar structure was made, and the future development and research trend of this composite is predicted.
Key words:  freeze-casting technology    lamellar structure    bionic ceramic    composite material    shell nacre
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB333  
基金资助: *国家自然科学基金(51575529;51605492);清华大学摩擦学国家重点实验室开放基金(SKLTKF15A07);中国石油大学(北京)引进人才科研基金(2462014YJRC049;2462015YQ0401)
作者简介:  张勋:男,1991年生,硕士研究生,主要从事仿贝壳层状结构陶瓷复合材料及其机械摩擦学方面的研究 E-mail:zhang_xun_2015@163.com;刘书海:男,1974年生,研究员,主要从事石油机械摩擦学及表面工程方面的研究 E-mail:liu_shu_hai@163.com
引用本文:    
张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 99-112.
ZHANG Xun, LIU Shuhai, XIAO Huaping. Applying Freeze-casting Technique to the Fabrication of Nacre-like Lamellar Structured Ceramic Composites: A State-of-the-art Review. Materials Reports, 2017, 31(13): 99-112.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.013  或          http://www.mater-rep.com/CN/Y2017/V31/I13/99
1 Chen B, Dong Q J, Wu X J, et al. Layered microstructure of clam shell and bionic research of ceramic/polymer composites[J].J Funct Mater,2004,35(s1):2345(in Chinese).
陈斌, 董勤军, 吴晓金, 等. 蛤蜊壳的层状微结构与陶瓷/聚合物复合材料的仿生研究[J]. 功能材料,2004,35(s1):2345.
2 Barthelat F, Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl[J]. Experimental Mechan,2007,47(3):311.
3 Nalla R K, Kinney J H, Ritchie R O. Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms[J]. Biomaterials,2003,24(22):3955.
4 Nalla R K, Kruzic J J, Kinney J H, et al. Mechanistic aspects of fracture and R-curve behavior in human cortical bone[J]. Biomate-rials,2005,26(2):217.
5 陈斌, 吴晓金, 吴新燕,等. 贝壳的层状微结构与仿生陶瓷/聚合物复合材料的研究[C]// 全国首届青年复合材料学术交流会论文集.2007:30.
6 Zhang H. Preparation and kinetic analysis of AZ91/SiC layered composites using ice template [D]. Changchun: Jilin University,2016(in Chinese).
张恒. 利用冰模板制备AZ91/SiC层状复合材料及动力学分析[D]. 长春:吉林大学,2016.
7 Zheng X, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials.[J]. Science,2014,344(6190):1373.
8 Dastjerdi A K, Rabiei R, Barthelat F. The weak interfaces within tough natural composites: Experiments on three types of nacre[J]. J Mechan Behav Biomed Mater,2012,19(4):50.
9 Xu L P, Peng J, Liu Y, et al. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity[J]. ACS Nano,2013, 7(6):5077.
10 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Mater,2014, 13(5):508.
11 Sarikaya M, Aksay I A. Design and processing of materials[J]. Biomimet Design Process Mater,1995(1):145.
12 Cheng Q, Wu M, Li M, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angew Chem Int Ed,2013,52(13):3750.
13 Wang R Z, Wen H B, Cui F Z, et al. Observations of damage morphologies in nacre during deformation and fracture[J]. J Mater Sci, 1995,30(9):2299.
14 Huang Z. Origin of flaw-tolerance in nacre[J]. Scientific Reports,2013,3(4):1693.
15 Currey J D. Mechanical properties of mother of pearl in tension[J]. Proceedings of the Royal Society of London. Series B. Biological Sciences,1977,196(1125):443.
16 He J S, Feng X M, Ai T T. Frozen casting preparation of porous alumina ceramics[J]. Mater Rev:Res,2011,25(10):103(in Chinese).
何俊升, 冯小明, 艾桃桃. 冰冻铸造法制备 Al2O3 多孔陶瓷[J]. 材料导报:研究篇,2011,25(10):103.
17 Xi J W. Preparation of lamellar Al-Si(-Mg)/Al2O3 composites using freeze casting and melt infiltration techniques[D]. Changchun: Jilin University,2014(in Chinese).
奚巨伟. 冷冻铸造—熔渗技术制备层状 Al-Si (-Mg)/Al2O3 复合材料[D]. 长春:吉林大学,2014.
18 Chen Z M, Xue B, Yang S Y. Frozen casting and its basic technological problems[J]. Modern Cast Iron,2005,25(5):26(in Chinese).
陈宗民, 薛冰, 杨思一. 冷冻铸造及其基本工艺技术问题[J]. 现代铸铁,2005,25(5):26.
19 Liu R, Xu T, Wang C A. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceram Int,2016,42(2):2907.
20 Jenei P, Choi H, Tóth A, et al. Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting[J]. J Mechan Behav Biomed Mater,2016,63:407.
21 Naleway S E, Fickas K C, Maker Y N, et al. Reproducibility of ZrO2-based freeze casting for biomaterials[J]. Mater Sci Eng C,2016, 61:105.
22 Yu J, Li S, Lv Y, et al. Preparation of high-temperature resistance silicon nitride ceramic composite by freeze casting[J]. J Chin Ceram Soc,2015,43(6):723.
23 Ballman H. Unique new forming technique[J]. Ceram Age,1957,791:36.
24 Novich B E, Sundback C. Quickset injection moulding of high performance ceramics[J]. Ceram Trans,1991,26:157.
25 Jones R W. Near net shape ceramics by freeze casting[J]. Adv Sci Technol,1999,20(2):117.
26 Meyers M A, Chen P Y, Lopez M I, et al. Biological materials: A materials science approach[J]. J Mechan Behav Biomed Mater, 2011,4(5):626.
27 Stupp S I, Braun P V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors[J]. Science,1997, 277(5330):1242.
28 Kaplan D L. Mollusc shell structures: Novel design strategies for synthetic materials[J]. Curr Opin Solid State Mater Sci,1998, 3(3):232.
29 Tang Z, Kotov N A, Magonov S, et al. Nanostructured artificial nacre[J]. Nature Mater,2003,2(6):413.
30 Launey M E, Munch E, Alsem D H, et al. Designing highly toug-hened hybrid composites through nature-inspired hierarchical complexity[J]. Acta Mater,2009,57(10):2919.
31 Bennadji-Gridi F, Smith A, Bonnet J P. Montmorillonite based artificial nacre prepared via a drying process[J]. Mater Sci Eng B,2006, 130(1):132.
32 Almqvist N, Thomson N H, Smith B L, et al. Methods for fabricating and characterizing a new generation of biomimetic materials[J]. Mater Sci Eng C,1999,7(1):37.
33 Barthelat F, Tang H, Zavattieri P D, et al. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. J Mechan Phys Solids,2007,55(2):306.
34 Cooper G A. The fracture toughness of composites reinforced with weakened fibres[J]. J Mater Sci,1970,5(8):645.
35 Cheng Y, Xiao H N, Li Y P. Layered composite ceramic toughening mechanism and preparation process [J]. J Ceram,2003,24(2):111(in Chinese).
成茵, 肖汉宁, 李玉平. 层状复合陶瓷增韧机理和制备工艺的研究[J]. 陶瓷学报,2003,24(2):111.
36 Pateras S K, Howard S J, Clyne T W. The contribution of bridging ligament rupture to energy absorption during fracture of metal-ceramic laminates[J]. Key Eng Mater,1996,127:1127.
37 Maxwell W A, Gurnick R S, Francisco A C. Preliminary investigation of the ‘freeze-casting’ method for forming refractory powders[J]. Technical Report Archive Image Library,1954,5321(2855):1.
38 Chen Z, Wang X, Atkinson A, et al. Spherical indentation of porous ceramics: Elasticity and hardness[J]. J Eur Ceram Soc,2016, 36(6):1435.
39 Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method[J]. Acta Biomater,2009,5(4):1319.
40 Szepes A, Ulrich J, Farkas Z, et al. Freeze-casting technique in the development of solid drug delivery systems[J]. Chem Eng Proces-sing: Process Intensification,2007,46(3):230.
41 Moritz T, Richter H J. Ice-mould freeze casting of porous ceramic components[J]. J Eur Ceram Soc,2007,27(16):4595.
42 Yang T Y, Lee J M, Yoon S Y, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J]. J Mater Sci: Mater Med,2010,21(5):1495.
43 Gay G, Azouni M A. Forced migration of nonsoluble and soluble metallic pollutants ahead of a liquid-solid interface during unidirectional freezing of dilute clayey suspensions[J]. Crystal Growth Design,2002,2(2):135.
44 Karlsson J O. Cryopreservation: Freezing and vitrification[J]. Scien-ce,2002,296(5568):655.
45 Davis M E. Ordered porous materials for emerging applications[J]. Nature,2002,417(6891):813.
46 Cooper A I. Porous materials and supercritical fluids[J]. Adv Mater,2003,15(13):1049.
47 Zhang H, Cooper A I. Synthesis and applications of emulsion-templated porous materials[J]. Soft Matter,2005,1(2):107.
48 Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Adv Mater,2006,18(16):2073.
49 Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Adv Mater,2006,18(14):1793.
50 White R J, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources[J]. Chem Soc Rev,2009, 38(12):3401.
51 White R J, Luque R, Budarin V L, et al. Supported metal nanoparticles on porous materials. methods and applications[J]. Chem Soc Rev,2009,38(2):481.
52 Thomas A. Functional materials: From hard to soft porous frameworks[J]. Angew Chem Int Ed,2010,49(45):8328.
53 Bae Y S, Snurr R Q. Development and evaluation of porous mate-rials for carbon dioxide separation and capture[J]. Angew Chem Int Ed,2011,50(49):11586.
54 Boissiere C, Grosso D, Chaumonnot A, et al. Aerosol route to functional nanostructured inorganic and hybrid porous materials[J]. Adv Mater,2011,23(5):599.
55 Fukasawa T,Ando M,Ohji T. Filtering properties of porous cera-mics with unidirectionally aligned pores[J]. J Ceram Soc Japan,2002,110(1283):627.
56 Fukasawa T, Ando M, Ohji T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. J Am Ceram Soc,2001,84(1):230.
57 Fukasawa T, Deng Z Y, Ando M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. J Am Ceram Soc,2002,85(9):2151.
58 Fukasawa T, Deng Z Y, Ando M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. J Mater Sci,2001,36(10):2523.
59 Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites[J]. Science,2006,311(5760):515.
60 Zhang H, Hussain I, Brust M, et al. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles[J]. Nat Mater,2005,4(10):787.
61 Omatete O O, Janney M A, Strehlow R A. Gelcasting: A new ceramic forming process[J]. Am Ceram Soc Bull,1991,70(10):1641.
62 Young A C, Omatete O O, Janney M A, et al. Gelcasting of alumina[J]. J Am Ceram Soc,1991,74(3):612.
63 Morissette S L, Lewis J. Chemorheology of aqueous-based alumina-poly (vinyl alcohol) gelcasting suspensions[J]. J Am Ceram Soc, 1999,82(3):521.
64 Li C, He J. Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al2O3[J]. Langmuir,2006,22(6):2827.
65 Rathod R P, Annapure U S. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits[J]. LWT - Food Science and Technology,2016,66:114.
66 Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues[J]. Adv Eng Mater,2008,10(3):155.
67 Wegst U G K, Schecter M, Donius A E, et al. Biomaterials by freeze casting[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,2010,368(1917):2099.
68 Worster M G, Wettlaufer J S. Natural convection, solute trapping, and channel formation during solidification of saltwater[J]. J Phys Chem B,1997,101(32):6132.
69 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials[J]. Science,2008,322(5907):1516.
70 Deville S, Saiz E, Tomsia A P. Ice-templated porous alumina structures[J]. Acta Mater,2007,55(6):1965.
71 Araki K, Halloran J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. J Am Ceram Soc,2005,88(5):1108.
72 Yoon B H, Choi W Y, Kim H E, et al. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering[J]. Scripta Mater,2008,58(7):537.
73 Hong C, Zhang X, Han J, et al. Ultra-high-porosity zirconia cera-mics fabricated by novel room-temperature freeze-casting[J]. Scripta Mater,2009,60(7):563.
74 Araki K, Halloran J W. New freeze-casting technique for ceramics with sublimable vehicles[J]. J Am Ceram Soc,2004,87(10):1859.
75 汪长安, 陈瑞峰, 刘伟渊, 等. 凝胶注模新工艺制备超轻质氧化铝陶瓷[C]//第十五届全国复合材料学术会议论文集 (上册),2008.
76 Liu W Y, Wang C A, Zhou L Z, et al. Preparation of high porosity and high strength porous alumina ceramics [J].Bull Chinese Ceram Soc,2008,36(12):1764(in Chinese).
刘伟渊, 汪长安, 周立忠, 等. 高气孔率及高强度多孔氧化铝陶瓷的制备[J]. 硅酸盐学报,2008,36(12):1764.
77 Surzhikov A P, Ghyngazov S A, Frangulyan T S, et al. Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis[J]. J Thermal Analys Calorimetry, 2017,128(2):787.
78 Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells during directional solidification[J]. Cryobio-logy,1994,31(5):483.
79 Lasalle A, Guizard C, Maire E, et al. Particle redistribution and structural defect development during ice templating[J]. Acta Mater, 2012,60(11):4594.
80 Zuo K H, Zeng Y P, Jiang D. Properties of microstructure-controllable porous yttria-stabilized ziroconia ceramics fabricated by freeze casting[J]. Int J Appl Ceram Technol,2008,5(2):198.
81 Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol[J]. J Am Ceram Soc,2001,84(7):1459.
82 Moon J W, Hwang H J, Awano M, et al. Preparation of NiO-YSZ tubular support with radially aligned pore channels[J]. Mater Lett, 2003,57(8):1428.
83 Peppin S S L, Wettlaufer J S, Worster M G. Experimental verification of morphological instability in freezing aqueous colloidal suspensions[J]. Phys Rev Lett,2008,100(23):238301.
84 Waschkies T, Oberacker R, Hoffmann M J. Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities[J]. Acta Mater,2011,59(13):5135.
85 Xue W, Huang Y, Xie Z, et al. Al2 O3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties[J]. J Eur Ceram Soc,2012,32(12):3151.
86 Li W, Lu K, Walz J Y. Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite-silica nanocomposites[J]. J Mater Sci,2012,47(19):6882.
87 Li W, Lu K, Walz J Y. Effects of solids loading on sintering and properties of freeze-cast kaolinite-silica porous composites[J]. J Am Ceram Soc,2013,96(6):1763.
88 Deville S. Freeze-casting of porous biomaterials: Structure, properties and opportunities[J]. Materials,2010,3(3):1913.
89 Deville S, Maire E, Bernard-Granger G, et al. Metastable and unstable cellular solidification of colloidal suspensions[J]. Nature Mater,2009,8(12):966.
90 Hench L L, Polak J M. Third-generation biomedical materials[J]. Science,2002,295(5557):1014.
91 Xiao H N. High-temperature friction and wear of SiC and mechanism analysis[J].Bull Chinese Ceram Soc,1997,25(2):157(in Chinese).
肖汉宁. 碳化硅陶瓷的高温摩擦磨损及机理分析[J]. 硅酸盐学报,1997,25(2):157.
92 Xiao H N. Research on alumina ceramic high-temperature wear and self-lubricating mechanism[J]. J Inorg Mater,1997,12(3):420(in Chinese).
肖汉宁. 氧化铝陶瓷的高温磨损与自润滑机理研究[J]. 无机材料学报,1997,12(3):420.
93 肖汉宁. 陶瓷材料的高温自润滑性研究[C]//第三届中国功能材料及其应用学术会议论文集,1998:961.
94 Xiao H N, Tan W, Yi W W. Study on materials design and perfor-mance of high alumina ceramic wear [J]. Ceram Sinica,2004,25(2): 81(in Chinese).
肖汉宁, 谭伟, 易雯雯. 高耐磨氧化铝陶瓷的材料设计与性能研究[J]. 陶瓷学报,2004,25(2):81.
95 Xiao H N. Alumina ceramic wear plastic deformation at high tempe-rature and recrystallization process [J]. Tribology, 1997,17(3):193 (in Chinese).
肖汉宁. 氧化铝陶瓷在高温磨损过程中的塑性变形与再结晶[J]. 摩擦学学报,1997,17(3):193.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed