Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 90-98    https://doi.org/10.11896/j.issn.1005-023X.2017.013.012
  材料综述 |
身管内膛镀铬层-钢基体界面损伤退化行为研究进展*
高文1,2, 张津1,2, 黄进峰3, 连勇1,2, 张乐1,2, 马旻昱1,2, 赵超1,2, 张尊君3, 刘凯1,2
1 北京科技大学新材料技术研究院,北京 100083;
2 北京市腐蚀、磨蚀与表面技术重点实验室,北京 100083;
3 北京科技大学新金属材料国家重点实验室,北京 100083
Research Progress of Degradation Failure of Interface of Chromium Coating and Steel Substrate in Gun Bores
GAO Wen1,2,ZHANG Jin1,2,HUANG Jinfeng3,LIAN Yong1,2,ZHANG Le1,2, MA Minyu1,2,ZHAO Chao1,2,ZHANG Zunjun3,LIU Kai1,2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083;
2 Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, Beijing 100083;
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 1980KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代战争对身管武器技战术指标的要求不断提高,身管内膛镀铬层-钢基体界面在服役过程中的损伤退化制约着高性能武器的发展。为揭示身管内膛镀铬层-钢基体界面损伤退化的行为与机制,简述了身管内膛镀铬层的制备过程,并对身管内膛镀铬层-钢基体界面损伤退化行为的过程、影响因素以及研究方法等近年来的研究工作进行了综述,最后对该领域未来研究的发展以及延缓身管失效的途径进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高文
张津
黄进峰
连勇
张乐
马旻昱
赵超
张尊君
刘凯
关键词:  身管内膛  镀铬层  钢基体  界面  损伤退化    
Abstract: There has been an increasing demand of technical and tactical indicators of gun barrels in modern war. Degradation failure of interface of chromium coating and steel substrate in gun bores restrict the development of high performance weapon. To describe the mechanisms of degradation failure behavior of interface of chromium coating and steel substrate in gun bores, the preparation steps of the electroplate chromium coating in gun bores are introduced first. Then the mechanism and the research method of the degradation failure behavior of interface of chromium coating and steel substrate in gun bores are reviewed. Finally, the direction for future development and the potential solutions to damage problems in gun barrel are proposed.
Key words:  gun bores    chromium coating    steel substrate    interface    degradation failure
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TJ04  
基金资助: *北京市腐蚀、磨蚀与表面技术重点实验室和北京市教委共建项目(SYS100080419)
通讯作者:  张津:通讯作者,女,1963年生,博士,教授,主要从事材料表面科学与技术方面的研究 E-mail:zhangjin@ustb.edu.cn   
作者简介:  高文:男,1989年生,博士研究生,主要从事严酷工况下材料服役行为方面的研究 E-mail:1047013882@qq.com
引用本文:    
高文, 张津, 黄进峰, 连勇, 张乐, 马旻昱, 赵超, 张尊君, 刘凯. 身管内膛镀铬层-钢基体界面损伤退化行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 90-98.
GAO Wen, ZHANG Jin, HUANG Jinfeng, LIAN Yong, ZHANG Le, MA Minyu, ZHAO Chao, ZHANG Zunjun, LIU Kai. Research Progress of Degradation Failure of Interface of Chromium Coating and Steel Substrate in Gun Bores. Materials Reports, 2017, 31(13): 90-98.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.012  或          http://www.mater-rep.com/CN/Y2017/V31/I13/90
1 马福球,陈云生,朵英贤. 火炮与自动武器 [M]. 北京: 北京理工大学出版社,2003:9.
2 Chen Y C, Song Q Z, Wang J Z. New technologies to extend the erosion life of gun barrel[J]. Acta Armamentarii,2006,27(2):330(in Chinese).
陈永才,宋遒志,王建中. 国内外火炮身管延寿技术研究进展[J]. 兵工学报,2006,27(2):330.
3 金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社,2004:12.
4 卓穗如. 机枪枪管寿命预测技术论文集[M]. 北京: 中国兵器工业第二零八研究所,1996:15.
5 Ahmad I, Picard J P. Proceedings of the interservice technical mee-ting on gun tube erosion and control [M]. New York: Watervliet Arsenal,1970.
6 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: Theories and mechanisms[J]. Wear,2005, 258(1-4):659.
7 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two: Modeling and predictions[J]. Wear,2005,258(1-4):671.
8 Lawton B. Thermo-chemical erosion in gun barrels[J]. Wear,2001,251(1):827.
9 Johnston I A. Understanding and predicting gun barrel erosion[R]. Defense Science and Technology Organization Weapons Systems Division,2005.
10 Zhang G X, Chen G N, Zhang K, et al. The mechanical mechanism study on prolonging life of chromium-plated gun bore through laser discrete pretreatment[J]. Acta Armamentarii,2006,27(6):978(in Chinese).
张国祥,陈光南,张坤,等. 激光离散预处理基体镀铬身管延寿的力学机理研究[J]. 兵工学报,2006,27(6):978.
11 唐庆源,董存学. 自动武器制造工艺学[M]. 北京: 兵器工业出版社,1990:192.
12 Mulligan C P, Smith S B, Vigilante G N. Characterization and comparison of magnetron sputtered and electroplated gun bore coatings[J]. J Pressure Vessel Technol,2006,128(2):240.
13 胡如南,陈松祺. 实用镀铬技术[M]. 北京: 国防工业出版社,2013:120.
14 Li H X, Chen G N, Zhang G X, et al. Study of the initial electroplated chromium layer by substrate-dissolving-away[J]. Trans Mater Heat Treatment,2006,27(2):94(in Chinese).
李怀学,陈光南,张国祥,等. 初始镀铬层的基体溶解法研究[J]. 材料热处理学报,2006,27(2):94.
15 Xi B. Development and practice of chromium plating on the barrel of guns[J]. Corros Protect,2000, 21(3):131(in Chinese).
奚兵. 枪管镀铬的发展与实践[J]. 腐蚀与防护,2000,21(3):131.
16 Li H X, Chen G N, Gong S L. Functionally graded interface effects of chromium electrodeposits with a laser-discretely treated steel substrate[J]. Chin J Lasers,2011(3):114(in Chinese).
李怀学,陈光南,巩水利. 激光离散预处理钢基铬层的功能梯度界面效应[J]. 中国激光,2011(3):114.
17 Zhou C G, Yang M J, Peng L H, et al. Effect of advanced high-frequency laser treating on joining condition of chrome cladding material[J]. Ordnance Mater Sci Eng,2003,26(5):15(in Chinese).
周重光,杨明江,彭林华,等. 先进高重频激光处理对镀铬层结合特性的影响[J]. 兵器材料科学与工程,2003,26(5):15.
18 黄子勋,吴纯素. 电镀理论[M]. 北京: 中国农业机械出版社,1982:76.
19 Fu H T, Zhang J, Huang J F, et al. Comparison of nitrided hot work tool steel and chromium coated 30SiMn2MoVA[J]. China Surf Eng,2015,28(6):1(in Chinese).
付航涛,张津,黄进峰,等. 热模钢渗氮与30SiMn2MoVA镀铬性能比较[J]. 中国表面工程, 2015,28(6):1.
20 Xu X Y, Zhang K, Chen G N, et al. Influence of laser hardening substrate on microstructure and bonding of electroplating chromium coating[J]. Chin J Lasers,2006,33(3):413(in Chinese).
徐向阳,张坤,陈光南,等. 激光硬化基体对镀铬层组织和结合的影响[J]. 中国激光,2006, 33(3):413.
21 Underwood J H, Vigilante G N, Mulligan C P. Review of thermo-mechanical cracking and wear mechanisms in large caliber guns[J]. Wear,2007,263(SI2):1616.
22 Evans A G, Hutchinson J W. The thermomechanical integrity of thin films and multilayers[J]. Acta Metall,1995,43(7):2507.
23 Huang J F, Lian Y, Zhang C, et al. Study on erosion of gun barrels with different surface treatments[J]. J University of Science and Technology Beijing,2014,36(3):323(in Chinese).
黄进峰,连勇,张程,等. 不同表面处理条件下身管烧蚀研究[J]. 北京科技大学学报,2014, 36(3):323.
24 Zhang K, Chen G N, Peng Y C. On the origin of substrate erosion in chromium plated gun barrel[J]. Phys Test Chem Anal Part A: Phys Test,2006,42(4):171(in Chinese).
张坤,陈光南,彭玉春. 镀铬枪管的基体初始烧蚀行为[J]. 理化检验-物理分册,2006,42(4):171.
25 Zhang G X, Zhang K, Chen G N, et al. Interfacial corrosion and spallstion of Cr-plated coating on a gun barrel steel substrate pre-treated by laser spiraly quenching[J]. Corros Sci Protect Technol, 2006,18(6):418(in Chinese).
张国祥,张坤,陈光南,等. 钢基身管内镀铬层下的激光淬火基体界面腐蚀与铬层剥落[J]. 腐蚀科学与防护技术,2006,18(6):418.
26 Yao J Q. Fabrication and properties of novel thermal barrier coating with laminated composite bond coat[D]. Beijing: University of Science and Technology Beijing,2014(in Chinese).
姚俊奇. 施加层状复合粘结层的新型热障涂层的制备与性能研究[D]. 北京: 北京科技大学, 2014.
27 Zhang G X, Chen G N, Zhang K, et al. Effect of laser-quenched substrate on interfacial shear strength of chromium plated coatings[J]. China Surf Eng,2006,19(6):25(in Chinese).
张国祥,陈光南,张坤,等. 基体激光淬火对镀铬层界面剪切强度的影响[J]. 中国表面工程, 2006,19(6):25.
28 Yang B Q, Zhang K, Chen G N, et al. A quantitative analysis of the effect of laser transformation hardening on crack driving force in steels[J]. Surf Coat Technol,2006,201(6):2208.
29 Yang B, Zhang K, Chen G, et al. Effect of a laser pre-quenched steel substrate surface on the crack driving force in a coating-steel substrate system[J]. Acta Mater,2007,55(13):4349.
30 Cote P J, Rickard C. Gas-metal reaction products in the erosion of chromium-plated gun bores[J]. Wear,2000,241(1):17.
31 Underwood J H, Vigilante G N, Troiano E. Failure beneath cannon thermal barrier coatings by hydrogen cracking: Mechanisms and modeling[M]∥Reuter W G, Piascik R S. American Society for Testing and Materials Special Technical Publication,2003:1417.
32 Underwood J H, Parker A P, Cote P J, et al. Compressive thermal yielding leading to hydrogen cracking in a fired cannon[J]. J Pressure Vessel Technol,1998,121(1):116.
33 Underwood J H, Parker A P. Thermal damage and shear failure of chromium plated coating on an A723 steel cannon tube[R]. US Army Armament Research Development and Engineering Center,1999.
34 Underwood J H, Troiano E. Critical fracture processes in army cannons: A review[J]. J Pressure Vessel Technol,2003,125(3):287.
35 Gao H X, Huang J F, Zhang J S, et al. Formation and spalling off mechanism of white layer of rapid-firing gun steel[J]. Heat Treat Met,2008,33(10):109(in Chinese).
高海霞,黄进峰,张济山,等. 速射武器身管用钢的白层形成及剥落机制[J]. 金属热处理, 2008,33(10):109.
36 Underwood J H, Witherell M D, Sopok S, et al. Thermomechanical modeling of transient thermal damage in cannon bore materials[J]. Wear,2004,257(9-10):992.
37 徐达,金文齐,冯三任. 火炮身管寿命推断技术与工程实践[M]. 北京: 国防工业出版社,2014:11.
38 Qiao Z P, Li J S, Xue J. Research on the performance decay rule of large caliber machinegun barrel[J]. Acta Armamentarii,2015,36(12):2231(in Chinese).
乔自平,李峻松,薛钧. 大口径机枪枪管失效规律研究[J]. 兵工学报,2015,36(12):2231.
39 Jiang Y C, Zhao Y L, et al. A testing research on the land and groove diameter of small caliber barrel assembly of antiaircraft gun[J]. J Ordnance Engineering College,2015,27(1):54(in Chinese).
蒋有才,赵玉龙,等. 小口径高炮身管阳线和阴线直径测试研究[J]. 军械工程学院学报,2015,27(1):54.
40 Wang G H, Zheng G Y, Qin Y M. Image mosaic system design of bore inner surface[J]. J Gun Launch Control,2008(2):42(in Chinese).
王国辉,郑戈毅,秦煜民. 身管内膛图像拼接系统的设计与实现[J]. 火炮发射与控制学报, 2008(2):42.
41 Li G J. Design of a defects detection system for barrel bore based on image processing[D]. Nanjing: Nanjing University of Science and Technology,2013(in Chinese).
李桂娟. 身管内膛疵病检测系统设计及实现[D]. 南京: 南京理工大学,2013.
42 Ning J, Fu P, Gao P X. Instrument research for the inside surface of the artillery piping digital testing[J]. China Measure Testing Tech-nol,2004,30(2):44(in Chinese).
宁静,付攀,高品贤. 火炮身管内膛表面数字检测仪器研制[J]. 中国测试技术,2004,30(2):44.
43 Kong G J, Zhang P L, Fu J P, et al. Automatic detecting system for the state parameters of gun bore[J]. J Test Measure Technol,2010,24(1):62(in Chinese).
孔国杰,张培林,傅建平,等. 火炮身管内膛状态参数自动采集系统研究[J]. 测试技术学报, 2010,24(1):62.
44 Meng X F. Research on life prediction model and bore comprehensive parameters detection system for gun barrel[D]. Nanjing: Nanjing University of Science and Technology,2013(in Chinese).
孟翔飞. 武器身管寿命预测模型及内膛参数综合检测系统研究[D]. 南京: 南京理工大学, 2013.
45 Caveny L H, Alkidas A C, et al. Steel erosion produced by propellant combustion products[C]∥Proceedings of the tri-service gun tube wear and erosion symposium.Dover, New Jersey,1977.
46 Yang S Y. Research on semi-closed bomb ablation tube method[J]. Explosive Propellants,1986, 12(3):11(in Chinese).
杨淑媛. 半密闭爆发器烧蚀管法研究[J]. 火炸药,1986,12(3):11.
47 Yang S Y, Wang G T. Analyze of the ablation tube[J]. Explosive Propellants,1990,16(2):5(in Chinese).
杨淑嫒,王固态. 烧蚀管法剖析[J]. 火炸药,1990,16(2):5.
48 Fan X M, Chen J Z, Xu T X. Erosion resistance evaluation of three coatings[J]. J Ballistics,2000, 12(1):65(in Chinese).
樊新民,陈健中,徐天祥. 三种镀覆层材料抗烧蚀性能评价[J]. 弹道学报,2000,12(1):65.
49 Liu H J. Erosity measurement of propellant with the ablation gun[J]. Explosive Propellants,1989, 15(3):38(in Chinese).
刘恒建. 用烧蚀枪测定发射药的烧蚀性[J]. 火炸药,1989,15(3):38.
50 Cote P J, Lee S L, Todaro M E, et al. Application of laser pulse heating to simulate thermomechanical damage at gun bore surfaces[J]. J Pressure Vessel Technol,2003, 125(8):335.
51 Cote P J, Todaro M E, Kendall G, et al. Gun bore erosion mechanisms revisited with laser pulse heating[J]. Surf Coat Technol,2003,163-164:478.
52 Cote P J, Kendall G, Todaro M E. Laser pulse heating of gun bore coatings[J]. Surf Coat Technol, 2001,146-147:65.
53 Chen Y C, Li P, Di C C. Study on inner surface coating and test method of gun barrel[J]. J Gun Launch Control,2008(4):53(in Chinese).
陈永才,李鹏,狄长春. 火炮身管内膛涂层制备及检验方法[J]. 火炮发射与控制学报,2008(4):53.
54 Tooke R C, O′Keefe T J. Erosion study of 7.62 mm Cr-Mo-V steel gun tubes[R]. Rock Island, Illinois: Weapons Laboratory, Rock Island Arsenal,1973.
55 Zhang G X, Chen G N, Zhang K, et al. Effect of laser-quenching substrate on the fracture toughness of chromium plated coatings[J]. Heat Treat Met,2007,32(3):52(in Chinese).
张国祥,陈光南,张坤,等. 激光淬火基体对镀铬层断裂韧性的影响[J]. 金属热处理,2007, 32(3):52.
56 Zhang G X, Li H X, Zhang K, et al. The study of the micro-crack morphologies on the initial electroplated chromium layer by substrate-chemically etching method[J]. China Surf Eng,2006, 19(4):8(in Chinese).
张国祥,李怀学,张坤,等. 初始镀铬层微裂纹形貌的基体化学腐蚀法研究[J]. 中国表面工程,2006,19(4):8.
57 Xu X Y, et al. Metallographic sample prepared by ion beam etching[J]. Trans Nonferrous Met Soc China,2004,14(2):282.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[12] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[13] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[14] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[15] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed