Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2828-2831    https://doi.org/10.11896/j.issn.1005-023X.2018.16.023
  金属与金属基复合材料 |
脱合金法制备Fe基纳米多孔材料及其催化性能
郑继波1, 李雪1, 卢公昊2, 宁佳林1, 黎曦宁1
1 辽宁科技大学材料与冶金学院,鞍山 114000;
2 辽宁科技大学化学工程学院,鞍山 114000
Preparation and Electrocatalytic Performance of Fe-based Nanoporous Alloys by Dealloying
ZHENG Jibo1, LI Xue1, LU Gonghao2, NING Jialin1, LI Xining1
1 School of Minerals Science and Metallurgy, University of Science and Technology Liaoning, Anshan 114000;
2 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114000
下载:  全 文 ( PDF ) ( 2146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纳米多孔金属材料成为催化和传感器等领域的研究热点。本研究将铁基非晶合金和脱合金工艺相结合,制备具有催化性能的纳米多孔材料。采用真空感应熔炼装置和真空急冷甩带装置制备宽1 mm×厚25 μm的Fe60Pd20P20非晶合金条带,并借助X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)对非晶合金条带进行表征。将Fe60Pd20P20非晶合金作为电化学脱合金的前驱体材料,在25 ℃、1 mol/L H2SO4电解液中进行1 h恒电位脱合金处理,成功制备出具有均匀三维连通孔道结构的纳米多孔金属材料。经电化学测试表明,恒电位0.72 V获得的纳米多孔材料,在0.5 mol/L H2SO4+0.5 mol/L HCOOH溶液的循环伏安曲线中,较原非晶合金的氧化峰电压负移约0.4 V,氧化峰电流密度提高约15倍,该纳米多孔材料对甲酸的分解有明显的催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑继波
李雪
卢公昊
宁佳林
黎曦宁
关键词:  非晶合金  纳米多孔材料  脱合金  电化学  催化性能    
Abstract: Recently, nanoporous metal materials are the focus in catalysis and sensor fields. In this study, Fe-based amorphous alloy was chosen as a raw material, and the nanoporous materials with catalytic properties were prepared by dealloying. Fe60-Pd20P20 amorphous alloy ribbons with 1 mm in width and 25 μm in thickness were prepared by vacuum melting and rapid solidification, and the amorphous alloy ribbons were characterized by XRD, SEM and EDS. The Fe60Pd20P20 alloy was used as a starting alloy for potentiostatic dealloying in 1 mol/L H2SO4 solution at 25 ℃. The nanoporous amorphous alloy with an uniform 3-D interconnect structure was successfully prepared. The electrochemical tests showed that this nanoporous amorphous alloy exhibited high electrocatalytic activity for the decomposition of formic acid. Compared with the original amorphous alloy untreated by dealloying, the oxidation peak potential had a negative shift of 0.4 V in 0.5 mol/L H2SO4+0.5 mol/L HCOOH solution as well as the oxidation peak current density increased by 15 times. The nanoporous material has obvious catalytic activity for the decomposition of formic acid.
Key words:  amorphous alloy    nanoporous material    dealloying    electrochemistry    catalytic performance
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51501084);辽宁省自然科学基金(201602398);2015年辽宁科技大学优秀人才培养项目(2015RC01);大学生创新创业训练(201710146000327)
通讯作者:  李雪:通信作者,女,1980年生,博士,副教授,硕士研究生导师,主要从事新能源材料和纳米多孔材料等研究 E-mail:yuki_0527@163.com   
作者简介:  郑继波:男,1990年生,硕士,研究方向为纳米多孔催化材料 E-mail:1031452000@qq.com;卢公昊:男,1975年生,博士,副教授,硕士研究生导师,主要从事纳米材料等研究 E-mail:ghlu@ustl.edu.cn
引用本文:    
郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
ZHENG Jibo, LI Xue, LU Gonghao, NING Jialin, LI Xining. Preparation and Electrocatalytic Performance of Fe-based Nanoporous Alloys by Dealloying. Materials Reports, 2018, 32(16): 2828-2831.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.023  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2828
1 Kan Y D, Liu W J, Zhong M L, et al. Development of nanoporous metals prepared by dealloying[J]. Heat Treatment of Metals,2008(2):97(in Chinese).
阚义德,刘文今,钟敏霖,等.脱合金法制备纳米多孔金属的研究进展[J].金属热处理,2008(2):97.
2 Ding Y. Nanoporous metals: A new class of nanostructured energy materials[J]. Journal of Shandong University,2011,46(10):121(in Chinese).
丁轶.纳米多孔金属:一种新型能源纳米材料[J].山东大学学报,2011,46(10):121.
3 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying[J]. Nature,2001,410(6827):450.
4 Smith G B, Maaroof A I, Gentle A. Homogenized Lorentz-Drude optical response in highly nanoporous conducting gold layers produced by de-alloying[J]. Optics Communications,2007,271(1):263.
5 Wang L J. Study on dealloying of Au-Ni alloys[D]. Dalian: Dalian Jiaotong University,2007(in Chinese).
王玲娟.Au-Ni合金的去合金化研究[D].大连:大连交通大学,2007.
6 Thorp J C, Sieradzki K, Tang L, et al. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1-x[J]. Applied Physics Letters,2006,88(3):1107.
7 Pugh D V, Dursun A, Corcoran S G. Formation of nanoporous pla-tinum by selective dissolution of Cu from Cu0.75Pt0.25[J]. Journal of Materials Research,2003,18(1):216.
8 Meyerheim H L, Soyka E, Kirschner J. Alloying and dealloying in pulsed laser deposited Pd films on Cu(100)[J]. Physical Review B,2006,74(8):085405.
9 Wang B L. Electrochemical dealloying of icosahedron Al-Pd-M(M=Mn,Fe,Cr,Mg) quasicrystals[D]. Dalian: Dalian University of Technology,2014(in Chinese).
王宝林.Al-Pd-M(M=Mn,Fe,Cr,Mg)二十面体准晶电化学脱合金化研究[D].大连:大连理工大学,2014.
10 Ye H, Zhu S, Akihisa I. The development of Fe-based soft magnetic amorphous and bulk metallic glassy alloys[J]. Journal of Functional Materials,2016,47(3):03027.
11 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817.
12 高胜利,杨奇,陈三平,等.化学元素周期表[M].北京:科学出版社,2017.
13 Zhang X H, Dong X Z, Yang C L, et al. Multicomponent nanoporouspalladium with enhanced catalytic activity prepared by dealloying metallic glass[J]. Journal of Functional Materials,2013,44(24):3634(in Chinese).
张旭海,董小真,杨春雷,等.金属玻璃脱合金制备高催化性能的多元掺杂纳米多孔Pd[J].功能材料,2013,44(24):3634.
14 Deng Z. A theis submitted in partial fulfillment of the requirement for the master of engineering[D]. Wuhan: Huazhong University of Science and Technology,2014(in Chinese).
邓珍.纳米多孔非晶合金的制备及其催化性能研究[D].武汉:华中科技大学,2014.
15 孙世刚, 陈胜利. 电化学[M]. 北京:化学工业出版社,2017.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[10] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[11] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[12] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[13] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[14] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[15] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed