Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1112-1120    https://doi.org/10.11896/cldb.19100184
  无机非金属及其复合材料 |
铁电膜层制备技术研究现状
秦红玲1, 朱合法1,2, 邢志国2, 王海斗2, 郭伟玲2, 黄艳斐2
1 三峡大学机械与动力学院,宜昌 433000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status of Ferroelectric Film Preparation Technology
QIN Hongling1, ZHU Hefa1,2, XING Zhiguo2, WANG Haidou2, GUO Weiling2, HUANG Yanfei2
1 School of Mechanics and Power Engineering of China Three Gorges University, Yichang 433000, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 5503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有铁电性且厚度在数十纳米至数微米的铁电薄膜具有良好的压电性、介电性及热释电性等特性,在微电子、光电子和微电子机械系统等领域有着广阔的应用前景。随着铁电薄膜制备技术的发展,使现代微电子技术与铁电薄膜的多种功能相结合,必将开发出众多新型功能器件,促进新兴技术的发展,因此对铁电薄膜的研究已成为国内、国际上新材料研究中的一个十分活跃的领域。在铁电薄膜的许多应用中,铁电存储器尤其引人注目。
   如何制备性能良好的铁电薄膜,满足集成铁电器件的要求成为制约铁电薄膜应用的关键环节,薄膜制备技术的进步可以提高铁电薄膜的质量,目前人们已经能够使用多种方法制备优良的铁电薄膜。总体来说,制备铁电薄膜按其制膜机理大体上可分为化学沉积法和物理沉积法两大类。化学沉积法制备微纳铁电薄膜,通过对薄膜成分、元素掺杂及薄膜取向等方面的研究提高铁电薄膜的性能,从而制备出高质量的薄膜。物理沉积法一般是在较高的真空度下进行,采用不同的基片和调节基片的温度可制得不同取向的薄膜,甚至外延薄膜,这种方法对自发极化呈现高度各向异性的薄膜制备显得尤为重要。热喷涂方法制备厚涂层通过从元素掺杂、热处理、工艺参数优化等方面来改善铁电涂层的性能。铁电薄膜制备技术的进步可以提高薄膜的质量,而薄膜质量的提高又可以促进功能器件制备技术的进步、使用性能的提升,从而使其得到更广泛的应用。
   本文综述了近年来铁电薄膜制备技术及其应用研究的新进展,主要针对化学方法、物理方法及热喷涂方法制备铁电薄膜的技术难点讨论了铁电薄膜成形的物理化学机理、优缺点及其应用情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦红玲
朱合法
邢志国
王海斗
郭伟玲
黄艳斐
关键词:  铁电薄膜  压电性能  铁电性能  介电性能    
Abstract: Ferroelectric thin films with the thickness of tens of nanometers to several microns have good piezoelectric, dielectric and pyroelectric properties, which have wide application prospects in the fields of microelectronics, photoelectronics and microelectromechanical systems. With the development of the preparation technology of ferroelectric thin films, the combination of modern microelectronic technology and various functions of ferroelectric thin films will develop many new functional devices and promote the development of emerging technologies. Therefore, the research on ferroelectric thin films has become a very active field in the research of new materials at home and abroad. Ferroelectric memory is particularly attractive in many applications of ferroelectric thin films.
How to prepare the ferroelectric thin films with good properties and meet the requirements of integrated ferroelectric parts has become the key link restricting the application of ferroelectric thin films. The progress of thin film preparation technology can improve the quality of ferroelectric thin films. At present, people have been able to use various methods to prepare excellent ferroelectric thin films. In general, the preparation of ferroelectric thin films can be divided into chemical deposition and physical deposition according to their film-making mechanism. Micronanometer ferroelectric thin films are prepared by chemical deposition. The properties of ferroelectric thin films are improved by studying the composition, doping and orientation of thin films. Physical deposition is generally carried out under a high vacuum degree. By adopting different substrates and adjusting the temperature of substrates, films with different orientations, even epitaxial films, can be prepared. This method is particularly important for the preparation of films with high anisotropy of spontaneous polarization. The properties of ferroelectric coatings can be improved from the aspects of element doping, heat treatment and process parameter optimization. The progress of ferroelectric thin film preparation technology can improve the quality of thin film, and the improvement of film quality can promote the progress of functional device preparation technology and the improvement of performance, so that it is widely used.
In this paper, the recent advances in the preparation and application of ferroelectric thin films are reviewed, and the physico-chemical mechanism, advantages and disadvantages and application of ferroelectric thin films are discussed in view of the technical difficulties in the preparation of ferroelectric thin films by chemical, physical and thermal spraying methods.
Key words:  ferroelectric thin films    piezoelectric properties    ferroelectric properties    dielectric properties
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TB381  
基金资助: 国家自然科学基金(51775554;51535011);国家重点基础研究发展计划(973计划)(61328304)
作者简介:  秦红玲,三峡大学教授,博士研究生导师,2001年6月毕业于武汉水利电力大学,获机械设计与制造专业工学学士学位。2004年6月毕业于三峡大学,获机械制造及其自动化专业硕士学位。2012年12月毕业于武汉理工大学,获载运工具运用工程专业博士学位。主要研究方向为:摩擦学及表面工程、振动与噪声控制。
邢志国,博士,助理研究员,研究方向为表面摩擦学。
王海斗,研究员,博士研究生导师,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任。2003年毕业于清华大学并获得博士学位。国家杰出青年科学基金获得者,现任国防973计划首席科学家。目前的研究领域包括表面工程、再制造和摩擦学研究。
引用本文:    
秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
QIN Hongling, ZHU Hefa, XING Zhiguo, WANG Haidou, GUO Weiling, HUANG Yanfei. Research Status of Ferroelectric Film Preparation Technology. Materials Reports, 2021, 35(1): 1112-1120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100184  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1112
1 Xiao Dingquan. Jorunal of Functional Materials,2003,34(5),479(in Chinese).
肖定全.功能材料,2003,34(5),479.
2 Gong Xiaogang. Preparation and characterization of PSTT ferroelectric thin films. Master's Thesis, Sichuan University,2007(in Chinese).
龚小刚.PSTT铁电薄膜的制备和性能研究.硕士学位论文,四川大学,2007.
3 Zhang Tao, Ma Hongwei, Li Min, et al. Journal of Xi'an University of Science and Technology,2012(1),124(in Chinese).
张涛,马宏伟,李敏,等.西安科技大学学报,2012(1),124.
4 Pei Yafang, Yang Chuanren, Chen Hongwei, et al. Insulating Materials,2006,39(6),23(in Chinese).
裴亚芳,杨传仁,陈宏伟,等.绝缘材料,2006,39(6),23.
5 Martin L W, Rappe A M. Nature Reviews Materials,2016,2,16087.
6 Makarovic M, Bencan A, Walker J, et al. Journal of the European Ceramic Society,2019,39,3693.
7 Song Dongpo. Study on the properties of solution deposited Bi6Fe2Ti3O18 thin films. Master's Thesis,University of Science and Technology of China,2016(in Chinese).
宋东坡.Bi6Fe2Ti3O18铁电薄膜溶液法制备及其性能研究.硕士学位论文,中国科学技术大学,2016.
8 Li Xiaojing, Ge Chuanxin, Wang Mingsong, et al. Surface Technology,2019,48(5),173(in Chinese).
李晓静,葛传鑫,王明松,等.表面技术,2019,48(5)173.
9 Lockman Z, Abidin N R Z, Hutagalung S D. Solid State Science and Technology,2007,17,5.
10 Kim Y K, Yoo J, Chung K, et al. Physica C,2006,445,57.
11 Liu J, Li M, Pei L, et al.Journal of Physics D: Applied Physics,2009,42(11),115409.
12 Mahmudah H D, Iriani Y, Ramelan A H. IOP Conference Series: Mate-rials Science and Engineering,2017,176(1),012011.
13 Jin L H, Lu J Z, Song D P, et al. Ceramics International,2018,44,11658.
14 Chen Rui, Huang Keke, Wu Feng,et al. Chemical Journal of Chinese Universities,2013,34(10),2270(in Chinese).
陈蕊,黄科科,吴小峰,等.高等学校化学学报,2013,34(10),2270.
15 Suzuki H, Naoe T, Miyazaki H, et al. Journal of the European Ceramic Society,2007,27(13),3769.
16 Sasajima K, Uchida H. Key Engineering Materials,2013,566,187.
17 Sun Li, Chen Yanfeng, Yu Tao, et al. Acta Physica Sinica,1996,45(10),1729(in Chinese).
孙力,陈延峰,于涛,等.物理学报,1996,45(10),1729.
18 Faraz A, Deepak N, Schmidt M, et al. Aip Advances,2015,5,087123.
19 Daisuke T, Hiroyuki N, Minoru N, et al. Materials Letters,2018,232,47.
20 Xia X, Chen Y, Feng Q, et al. Applied Physics Letters,2016,108(20),202103.
21 Boschi B, Bosi M, Berzina T, et al. Journal of Crystal Growth,2016,443,25.
22 Muhamad N A, Rusop M. Advanced Materials Research,2013,832,439.
23 Nishida K, Shirakata K, Osada M, et al. Journal of Crystal Growth,2004,272(1),789.
24 Pu Zhaohui. Preparation and characterization of PZT ferroelectric thin films. Master's Thesis, Sichuan University,2006(in Chinese).
蒲朝辉.PZT铁电薄膜的制备与性能研究.硕士学位论文,四川大学,2006.
25 Zhang Chenghao, Di Jiejian, Tan Peipei, et al. Journal of Synthetic Crystals,2016,45(8),2056(in Chinese).
张程浩,狄杰建,谭培培,等.人工晶体学报,2016,45(8),2056.
26 Liu Xiufeng, Ge Yangyang, Ge Dayong, et al. Materials for Mechanical Engineering,2018,42(5),35(in Chinese).
刘修锋,葛洋洋,葛大勇,等.机械工程材料,2018,42(5),35.
27 Zhang W, Cheng H, Yang Q, et al. Ceramics International,2016,42(3),4400.
28 Song Jianmin, Yang Fan, Dai Xiuhong, et al. Journal of the Chinese Ceramic Society,2018,46(10),1335(in Chinese).
宋建民,杨帆,代秀红,等.硅酸盐学报,2018,46(10),1335.
29 Li T, Wang G, Li K, et al. Ceramics International,2014,40(1),1195.
30 Zhang Huifeng, Liu Xuesen, Ren Wei, et al. Ceramics International,2018,44,S7.
31 Ma S, Cheng X, Ma Z, et al. Ceramics International,2018,44(16),2046.
32 Bedoya-Hincapié C M, Restrepo-Parra E, Olaya-Flórez J J, et al. Cera-mics International,2014,40(8),11831.
33 Lu H, Liu L, Lin J, et al. Ceramics International,2018,44(6),6514.
34 Jamil A, Rafiq M A. Ceramics International,2018,44(18),22574.
35 Nguyen M D, Trinh T Q, Dekkers M, et al. Ceramics International,2014,40(1),1013.
36 Daryapurkar A S, Kolte J T, Apte P R, et al. Ceramics International,2014,40(1),2441.
37 Liang Lirong, Wei Aixiang, Mo Zhong. Chinese Journal of Lasers,2018,45(9),218(in Chinese).
梁立容,魏爱香,莫忠.中国激光,2018,45(9),218.
38 Li Y, Shi P, Wu X, et al. Ceramics International,2015,41,S202.
39 Liu Tao. Journal of Yulin University,2010,20(4),30(in Chinese).
刘涛.榆林学院学报,2010,20(4),30.
40 Lu Zhongdan. Study of the structure and photocatalytic activity of doping TiO2 thin films deposited by electron beam evaporation. Master's Thesis, Nanjing University of Science & Technology,2012(in Chinese).
陆中丹.电子束蒸发沉积掺杂TiO2薄膜的结构控制及其性质研究.硕士学位论文,南京理工大学,2012.
41 Rastogi A C, Darvish S R, Bhatnagar P K. Materials Chemistry and Phy-sics,2002,73(2),135.
42 Zhang Y, Zhu X, Zhu J, et al. Ceramics International,2016,42(3),4080.
43 Zhang Y J, Chen C L, Guo B, et al. Electronic Components and Mate-rials,2014.33(4),13(in Chinese).
张云婕,陈长乐,郭兵,等.电子元件与材料,2014,33(4),13.
44 Niu G, Gautier B, Yin S, et al. Thin Solid Films,2012,520(14),4595.
45 Xing Z, Wang H, Zhu L, et al. Journal of Alloys and Compounds,2014,582,246.
46 Liu Z, Xing Z, Wang H, et al. Journal of Physics & Chemistry of Solids,2018,115,208.
47 Ctibor P, Sedlacek J. Journal of Advanced Ceramics,2012,1(1),50.
48 Yao K, Chen S, Guo K, et al. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2017,64(11),1758.
49 Tan C K I, Yao K, Ma J. International Journal of Applied Ceramic Technology,2013,10(4),701.
50 Liu Z, Xing Z, Wang H, et al. Journal of Alloys and Compounds,2017,727,696.
51 Chen S, Tan C K I, Yao K. Journal of the American Ceramic Society,2016,99(10),3293.
52 Guo K, Chen S, Tan C K I, et al. Journal of the American Ceramic Society,2017,100(8),3385.
53 Liu Z, Xing Z, Wang H, et al. Journal of the European Ceramic Society,2017,37(11),3511.
54 Dent A H, Patel A, Gutleber J, et al. Materials Science and Engineering: B,2001,87(1),23.
55 Kotlan J, Seshadri R C, Sampath S, et al. Ceramics International,2015,41(9),11169.
[1] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[2] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[3] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[4] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[5] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[6] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[7] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[8] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[9] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[10] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[11] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[12] 张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed