Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3839-3844    https://doi.org/10.11896/j.issn.1005-023X.2018.22.001
  无机非金属及其复合材料 |
Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能
樊娇娇, 何新华, 符小艺, 陈丹玲
华南理工大学材料科学与工程学院,广州 510640
Microstructure and Electrical Properties of Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15 Materials
FAN Jiaojiao, HE Xinhua, FU Xiaoyi, CHEN Danling
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 3069KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相烧结法制备了铋层结构铁电材料(1-x)Na0.5Bi2.5Nb2O9-xNa0.5Bi4.5Ti4O15(NBNO-NBT-x)。结合XRD、SEM以及电子能谱分析推测NBNO-NBT-0.5陶瓷主要为2-4层的共生结构NaBi7Ti4Nb2O24,由Na0.5Bi2.5Nb2O9和Na0.5Bi4.5-Ti4O15沿c轴交替排列。晶格结构的不对称性增加导致晶格应力增大,而NBNO和NBT两种单体系的复合将进一步加大离子无序和结构无序,从而使该组成的陶瓷表现出不同于两种单体系的微观结构和电性能。NBNO-NBT-0.5陶瓷的晶粒长度大于20 μm,厚度小于2 μm,晶粒长径比明显高于NBNO和NBT;而相比于两种单体其居里温度TC降低,居里峰宽化,高温介电损耗增大,电导激活能减小,铁电、压电性能降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊娇娇
何新华
符小艺
陈丹玲
关键词:  铋层结构铁电体  共生  介电性能  压电性能    
Abstract: The bismuth-layer structured ferroelectric materials, (1-x)Na0.5Bi2.5Nb2O9-xNa0.5Bi4.5Ti4O15(NBNO-NBT-x), were fabricated by solid state sintering. It was inferred from XRD, SEM and EDS analysis that NBNO-NBT-0.5 ceramics were mainly composed of 2-4 intergrowth structured NaBi7Ti4Nb2O24, with Na0.5Bi2.5Nb2O9 and Na0.5Bi4.5Ti4O15 alternative arrangement along the c axis. The increasing asymmetry of crystal lattice led to increasing lattice stress, and the composite of NBNO and NBT further increased the ionic disorder and structural disorder, which made the ceramics exhibit different microstructure and electric properties. Compared with NBNO and NBT, NBNO-NBT-0.5 ceramics showed a larger aspect ratio, with an average grain diameter higher than 20 μm and a thickness lower than 2 μm. Meanwhile, a lower Curie temperature, a larger high temperature dielectric loss, as well as a lesser conductivity activation energy were also observed in NBNO-NBT-0.5 ceramics, and both ferroelectric and piezoelectric properties decreased.
Key words:  bismuth layer-structured ferroelectrics (BLSF)    intergrowth    dielectric properties    piezoelectric properties
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TM282  
基金资助: 广东省科技计划项目(2007A010500012;2013A011401010)
通讯作者:  何新华:通信作者,女,1969年生,博士,副教授,硕士研究生导师,主要从事介电、压电陶瓷及薄膜材料的研究 E-mail:imxhhe@scut.edu.cn   
作者简介:  樊娇娇:女,1993年生,硕士研究生,主要从事铋层结构无铅压电陶瓷的改性研究 E-mail:fanjiao8656@qq.com
引用本文:    
樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
FAN Jiaojiao, HE Xinhua, FU Xiaoyi, CHEN Danling. Microstructure and Electrical Properties of Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15 Materials. Materials Reports, 2018, 32(22): 3839-3844.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.001  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3839
1 Takenaka T, Nagata H, Hiruma Y. Current developments and prospective of lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Physics,2008,47(5):3787.
2 Shi W L, Xing Z G, Wang H D, et al. Research status of the lead-free piezoelectric ceramics[J]. Materials Review A: Review Papers,2014,28(2):45(in Chinese).
石伟丽,邢志国,王海斗,等.无铅压电陶瓷的研究现状[J].材料导报:综述篇,2014,28(2):45.
3 Tian X, Qu S B, Wang B, et al. Microstructure and electrical pro-perties of ultra high temperature (1-x)CaBi2Nb2O9-xNa0.5Bi2.5-Nb2O9 ceramics[J]. Materials Research Innovations,2015,19(3):171.
4 Jannet D B, Maaoui M E, Mercurio J P. Ferroelectric versus relaxor behaviour in Na0.5Bi4.5Ti4O15-BaBi4Ti4O15 solid solutions[J]. Journal of Electroceramics,2003,11(1-2):101.
5 Luo S, Noguchi Y J, Miyayama M, et al. Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system[J]. Materials Research Bulletin,2001,36(3-4):531.
6 Yi Z G, Li Y X, Yang Q B, et al. La doping effects on intergrowth Bi2WO6-Bi3TiNbO9 ferroelectrics[J]. Ceramics International,2008,34(4):735.
7 Tian X X, Qu S B, Wang B, et al. Intergrowth bismuth layer-structured Na0.5Bi2.5Nb2O9-Bi4Ti3O12 high temperature ferroelectrics ceramics[J]. Journal of Inorganic and Organometallic Polymers and Materials,2014,24(2):355.
8 Gao X, Gu H, Li Y X, et al. Structural evolution of the intergrowth bismuth-layered Bi7Ti4NbO21[J]. Journal of Materials Science,2011,46(16):5423.
9 Fei L J, Zhou Z Y, Hui S P, et al. Electrical properties of CaBi4Ti4O15-Bi4Ti3O12 piezoelectric ceramics[J]. Ceramics International,2015,41(8):9729.
10 Wang W, Shan D, Sun J B, et al. Aliovalent B-site modification on three-and four-layer Aurivillius intergrowth[J]. Journal of Applied Physics,2008,103(4):044102.
11 Voronkova V I, Yanovskii V K. The structure and ferroelectric properties of layered compounds in the system Bi4Ti3O12-Bi2WO6[J]. Physica Status Solidi (a),1987,101(1):45.
12 Gao D J, Kwok K W, Lin D. Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0.5Bi4.5Ti4O15 ceramics[J]. Current Applied Physics,2011,11(3): S124.
13 Zhao L, Xu J X, Yin N, et al. Microstructure, dielectric, and piezoelectric properties of Ce-modified Na0.5Bi4.5Ti4O15 high temperature piezoceramics[J]. Physica Status Solidi (RRL)-Rapid Research Letters,2008,2(3):111.
14 Jiang X P, Jiang X A, Chen C, et al. Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics[J]. Journal of Physics D: Applied Physics,2016,49(12):125101.
15 Zhang C C, Zou J X, Li L H, et al. Dielectric and ferroelectric pro-perties of bismuth-layer high Curie point Na0.5Bi4.5Ti4O15 ceramics with Mg-doping[J]. Ceramics International,2017,43(16):13963.
16 Li Z, Chan H L W, Li Y X, et al. Anisotropic properties and crystal structure of ferroelectric Na0.5Bi4.5Ti4O15[J]. Journal of Alloys and Compounds,2010,506(1):70.
17 Jiang X P, Fu X L, Chen C, et al. High performance Aurivillius type Na0.5Bi4.5Ti4O15 piezoelectric ceramics with neodymium and cerium modification[J]. Journal of Advanced Ceramics,2015,4(1):54.
18 Abah R, Gai Z G, Zhan S Q, et al. The effect of B-site (W/Nb) co-substituting on the electrical properties of sodium bismuth titanate high temperature piezoceramics[J]. Journal of Alloys and Compounds,2016,664:1.
19 Wang C M, Zhao L, Liu Y, et al. The temperature-dependent pie-zoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate[J]. Ceramics International,2016,42(3):4268.
20 Jiang Y L, Jiang X P, Chen C, et al. Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15-Bi4Ti3O12 intergrowth high tempe-rature piezoceramics[J]. Ceramics International,2017,43(8):6446.
21 Zhou Z Y, Li Y C, Hui S P, et al. Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics[J]. Applied Physics Letters,2014,104(1):012904.
22 Peng Z H, Chen Q, Wu J G, et al. Dielectric and piezoelectric pro-perties of Sb5+ doped (NaBi)0.38(LiCe)0.05[]0.14Bi2Nb2O9 ceramics[J]. Journal of Alloys and Compounds,2011,509(33):8483.
23 Zhou Z, Liang R, Shao X, et al. Microstructure and electrical pro-perties of 3-0 type composite of Na0.5Bi2.5Nb2O9-based bismuth-layered piezoceramics[J]. Ceramics International,2017,43(15):11710.
24 Horiuchi S, Muramatsu K, Shimazu M. Intergrowth in complex bismuth oxides, Bi2CaNan-2NbnO3n+3(n=5~8), revealed by 1-MV high-resolution electron microscopy[J]. Journal of Solid State Che-mistry,1980,34(1):51.
25 Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals[J]. Ferroelectrics,1982,44(1):55.
26 Kikuchi T. Stability of layered bismuth compounds in relation to the structural mismatch[J]. Materials Research Bulletin,1979,14(12):1561.
27 Yao Z R, Chu R Q, Xu Z J, et al. Thermal stability and enhanced electrical properties of Er3+-modified Na0.5Bi4.5Ti4O15 lead-free piezoelectric ceramics[J]. Royal Society of Chemistry Advances,2016,6(97):94870.
28 Wang X J, Jiang X P, Jiang H C, et al. Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9 ceramics[J]. Journal of Alloys and Compounds,2015,646(15):528.
29 Zhao Y. Study on preparation and properties of bismuth layered structure lead-free piezoelectric ceramics[D]. Xi’an: Xi’an University of Science and Technology,2008:48(in Chinese).
赵莹.铋层状结构无铅压电陶瓷的制备技术与性能研究[D].西安:西安科技大学,2008:48.
30 Ismunandar I, Kennedy B J, Gunawan, et al. Structure of ABi2Nb2O9 (A=Sr, Ba): Refinement of powder Neutron diffraction data [J]. Journal of Solid State Chemistry,1996,126(1):135.
31 Palanduz A C, Smyth D M. Defect chemistry and charge transport in SrBi2Nb2O9[J]. Journal of Electroceramics,2003,11(3):191.
32 Zhang F Q, Wahyudi O, Li Y X, et al. The kinetic effect on formation of disordered intergrowth structures in mixed bismuth-layered (Bi3NbTiO9)2(Bi4Ti3O12)1 compounds[J]. Ceramic International,2015,41: S162.
[1] 王耿,傅邱云,张芦,施浩,田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[2] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[3] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[4] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[5] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[6] 张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed