Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 21-25    https://doi.org/10.11896/j.issn.1005-023X.2017.012.005
  材料研究 |
SnO2掺杂对BMN陶瓷结构及介电性能的影响*
彭森1,2, 吴孟强2, 黄同成1, 许建明1, 周建华1, 罗高峰1, 余建坤1, 张树人2
1 邵阳学院信息工程系, 邵阳 422000;
2 电子科技大学能源科学与工程学院, 成都 611731
Effect of SnO2 Doping on the Structure and Dielectric Properties of BMN Ceramics
PENG Sen1,2, WU Mengqiang2, HUANG Tongcheng1, XU Jianming1, ZHOU Jianhua1, LUO Gaofeng1, YU Jiankun1, ZHANG Shuren2
1 Department of Information Engineering, Shaoyang University, Shaoyang 422000;
2 School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731
下载:  全 文 ( PDF ) ( 1389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相烧结法制备Ba(Mg1/3Nb2/3)O3+x(x=0~8)% SnO2(BMSN,x为质量分数)微波介质陶瓷,并研究SnO2掺杂对Ba(Mg1/3Nb2/3)O3 (BMN)微波介质陶瓷结构及介电性能的影响。XRD分析表明,陶瓷体系中存在两种相,主晶相Ba(Mg1/3-Nb2/3)O3和附加相Ba5Nb4O15。随着x的增大,BMSN陶瓷体系的相结构逐渐由钙钛矿六方结构转变为立方结构,同时有序相逐渐由1∶2有序结构转变为1∶1有序结构。研究表明:添加适量的SnO2可以促进液相烧结,当SnO2掺杂质量分数为6%时,BMN陶瓷致密化烧结温度由纯相时的1 550 ℃以上降低至1 200 ℃,表观密度ρ = 6.39 g/cm3,相对理论密度为99.1%,此时BMSN陶瓷体系拥有优良的微波介电性能——高相对介电常数(εr=33.6),接近于零的谐振频率温度系数(τf=0.15×10-6-1),高品质因数与谐振频率的乘积(Q·f = 112 300 GHz (8 GHz))。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭森
吴孟强
黄同成
许建明
周建华
罗高峰
余建坤
张树人
关键词:  微波介质陶瓷  掺杂  晶体结构  介电性能    
Abstract: The structure and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 (BMN) ceramics doped with x(x=0-8)wt% SnO2 (BMSN) were investigated by the solid-state reaction technique. XRD analysis suggested there were two phases: main crystalline phase Ba(Mg1/3Nb2/3)O3 and secondary phase Ba5Nb4O15. As x value increased, the crystal structure changed from pe-rovskite hexagonal structure to cubic structure and the ordered phase changed from 1∶2 ordered structure to 1∶1 ordered structure. It was found that the liquid phase sintering can be promoted greatly by adding an appropriate amount of SnO2. When 6wt% SnO2 was added, the BMN ceramic showed a lower sintering temperature (1 550 ℃) compared to pure BMN (1 200 ℃), an apparent density ρ of 6.39 g/cm3, a relative theoretical density of 99.1%, also excellent microwave dielectric properties: high relative dielectric constant(εr= 33.6), near-zero temperature coefficient of resonant frequency value τf=0.15×10-6-1, high quality factor plus resonant frequency (Q·f=112 300 GHz (8 GHz)).
Key words:  microwave dielectric ceramic    doping    crystal structure    dielectric property
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TM277  
基金资助: *国家自然科学基金 (61135004);湖南省自然科学基金 (14JJ7075;15JJ2130);湖南省教育厅基金 (13A091;14A129;07C681);邵阳学院资助项目(2016JG43)
通讯作者:  吴孟强:通讯作者,男,1970年生,博士,教授,主要从事微波介质材料与器件、新能源材料与器件的研究开发 E-mail:mwu@uestc.edu.cn   
作者简介:  彭森:男,1983年生,硕士,讲师,主要从事微波介质材料与器件的研究
引用本文:    
彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
PENG Sen, WU Mengqiang, HUANG Tongcheng, XU Jianming, ZHOU Jianhua, LUO Gaofeng, YU Jiankun, ZHANG Shuren. Effect of SnO2 Doping on the Structure and Dielectric Properties of BMN Ceramics. Materials Reports, 2017, 31(12): 21-25.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.005  或          http://www.mater-rep.com/CN/Y2017/V31/I12/21
1 Ma P P, Yi L, Liu X Q, et al. Effects of post-densification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6-x/2Zn0.4-x/2Mgx)1/3Nb2/3)O3 ceramics[J]. J Am Ceram Soc,2013,96(11):3417.
2 Yue Z X, Shi F, et al. Far-infrared reflection study on crystal structures and dielectric properties of Ba(Mg1/3Ta2/3)O3-BaWO4 ceramics[J]. J Mater Sci: Mater Electron,2014,26(2):711.
3 Shi F, Dong H L. Correlation of phonon characteristics and crystal structures of Ba[Zn1/3(Nb1-xTax)2/3]O3 solid solutions[J]. J Appl Phys,2012,111(1):014111.
4 Yang Baoju, Yin Yansheng, Zhang Weike,et al. Determination of TiAl/B4C composite ceramic sintering process parameters [J]. J Chongqing Inst Technol: Nat Sci Ed,2009,23(4):142(in Chinese).
杨宝菊, 尹衍升, 张卫珂, 等. TiAl/B4C复合陶瓷烧结工艺参数的确定[J]. 重庆工学院学报: 自然科学版,2009,23(4):142.
5 Nomura S. Ceramics for microwave dielectric resonators [J]. Ferroelectrics,1983,49(1-4):61.
6 Chen F L, Hong H L, et al. Microstructural characteristics and microwave dielectric properties of Ba[Mg1/3(Nbx/4Ta(4-x)/4)2/3]O3 ceramics[J]. J Alloy Compd,2006,407(1-2):318.
7 Liu H X, Tian Z Q. New microwave dielectric ceramics with near-zero τf in the Ba(Mg1/3Nb2/3)O3-Ba(Ni1/3Nb2/3)O3 system[J]. J Mater Sci,2004,39(13):4319.
8 Shan L,Pan W. Effect of V2O5 addition on the microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics[J]. Key Eng Mater,2007,336(2):301.
9 Lim J B, Kim D H, et al. Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics[J]. Mater Res Bull,2006,41(6):1199.
10 Kim Y W, Park J H, Park J G. Local cationic ordering behavior in Ba(Mg1/3Nb2/3)O3 ceramic[J]. J Eur Ceram Soc,2004,24(6):1775.
11 Tang B, Fang Z X, Li Y X, et al.Microwave dielectric properties of Ba(Co0.56Y0.04Zn0.35)1/3Nb2/3+xO3(x =-0.004~0.008) ceramics[J]. J Mater Sci: Mater Electron,2015,26(9):6585.
12 Sun T L, Chen X M. Raman spectra analysis for Ba[(Mg1-xNix)1/3-Nb2/3]O3 microwave dielectric ceramics[J]. AIP Adv,2015,5(1):3.
13 Desu S B, O′Bryan H M. Microwave loss quality of BZT ceramics[J]. J Am Ceram Soc,1985,68(10):546.
14 Ning P F, Li L X, et al. Raman scattering, electronic structure and microwave dielectric properties of Ba([Mg1-xZnx]1/3Ta2/3)O3 ceramics[J]. Ceram Int,2012,38(2):1391.
15 Zhang H, Diao H L, et al. XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1-x)/3ZrxNb2(1-x)/3]O3 so-lid solutions[J]. Ceram Int,2014,40(1):2427
16 Colla E L, Reaney I M, Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity[J]. J Appl Phys,1993,74(5):3414.
17 Lim J B, Son J, Nahm S,et al. Low-temperature sintering of B2O3-added Ba(Mg1/3Nb2/3)O3 ceramics[J]. Jpn J Appl Phys,2004,43(8R):5388.
18 Wang Dongmei, Mao Hong, Wu Mengqiang,et al. Effect of Ca-B-Si glass doping on the microwave dielectric properties of Ba(Mg1/3-Nb2/3)O3[J].Ceram Electron Components Mater,2010,29(1):22(in Chinese).
王冬梅,毛宏,吴孟强,等. Ca-B-Si掺杂对 Ba(Mg1/3Nb2/3)O3陶瓷介电性能的影响[J]. 电子元件与材料,2010,29(1):22.
19 Sun T L, Li L, Mao M M, et al. Effects of postdensification annealing on microwave dielectric properties of Ba([Mg1-xCox]1/3Nb2/3)-O3 ceramics[J]. Int J Appl Ceram Technol,2013,10(S1):E210.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[7] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[8] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[9] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[10] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[11] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[12] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[13] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[14] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[15] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed