Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3012-3015    https://doi.org/10.11896/cldb.18070226
  无机非金属及其复合材料 |
尖晶石固化磷酸铝基复合材料的制备与性能
杨小波1, 吕毅1, 王华栋1, 张冰清1, 应国兵2
1 航天特种材料及工艺技术研究所,北京 100074
2 河海大学力学与材料学院,南京 211100
Preparation and Properties of Aluminum Phosphate Composite Cured by Spinel
YANG Xiaobo1, LYU Yi1, WANG Huadong1, ZHANG Bingqing1, YING Guobing2
1 Aerospace Institute of Advanced Materials & Processing Technology, Beijing 100074
2 College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 2189KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以石英纤维布为增强相、酸式磷酸铝水溶胶为基体相、镁铝尖晶石MgAl2O4粉体为固化助剂,运用模压工艺制备了磷酸铝基复合材料。采用XRD、SEM及力学试验机等分析测试手段,研究了磷酸铝溶胶流动性及尖晶石粉体的烧结过程,探讨了尖晶石粉体作为固化助剂对复合材料力学性能及介电性能的影响。结果表明:磷酸铝溶胶水含量(质量分数)达到50%,胶液粘度小于200 mPa·s;固相法制备的尖晶石粉体添加量(质量分数)达到18%且基体含量(质量分数)接近50%时,得到的磷酸铝复合材料的力学性能达到最佳,弯曲强度达到167 MPa,层间剪切强度达到14 MPa,压缩强度达到40 MPa;室温下复合材料的介电性能(介电常数ε=3.35、损耗角正切值tanδ=0.009)最好,但随着温度升高复合材料基体中磷酸铝发生相转变,引起介电参数逐步增大,推测低温石英型磷酸铝(B-AlPO4)逐步转变为高温方石英型磷酸铝(C-AlPO4)后材料的介电性能将得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨小波
吕毅
王华栋
张冰清
应国兵
关键词:  MgAl2O4尖晶石  磷酸铝基复合材料  力学性能  介电性能    
Abstract: Aluminum phosphate composites were prepared by compression processing technology, using quartz textile as reinforcing part, aluminum phosphate hydrosol as matrix and spinel MgAl2O4 as curing agent, respectively. The flowing power of the aluminum phosphate hydrosol was studied. The spinel MgAl2O4 powders, synthesized by solid state reaction, was identified by X-ray powders diffraction. Microstructures of the composites were observed by scanning electron microscope. And the influences of MgAl2O4 contents on the mechanical and dielectric properties of aluminum phosphate composites were investigated. It was found that the viscosity of aluminum phosphate hydrosol was less than 200 mPa·s when content of water arrived at 50wt%. While the content of spinel MgAl2O4 reached 18wt% with a matrix ratio of 50 wt%, the composite obtained the highest mechanical properties, which the flexural strength, compression strength and interlaminar shearing strength were 167 MPa, 14 MPa and 40 MPa, respectively. The dielectric constant and loss tangent of the composite at room temperature were 3.35 and 0.009, respectively. However, the dielectric parameters increased gradually when crystalline phase of aluminum phosphate was changed with increasing temperature. And the dielectric properties of composites would be improved while the crystalline phase of aluminum phosphate was changed from B-AlPO4 into C-AlPO4.
Key words:  MgAl2O4 spinel    aluminum phosphate composites    mechanical properties    dielectric properties
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TB34  
通讯作者:  yangxb_ht@163.com   
作者简介:  杨小波,航天特种材料及工艺技术研究所,高级工程师。2005年7月毕业于哈尔滨工业大学,获得工学硕士学位。同年加入航天特种材料及工艺技术研究所工作至今,主要从事功能/结构陶瓷领域的研究,先后负责完成国家部委、科工集团等支持的多个课题项目研究,申报发明专利10余项。
引用本文:    
杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
YANG Xiaobo, LYU Yi, WANG Huadong, ZHANG Bingqing, YING Guobing. Preparation and Properties of Aluminum Phosphate Composite Cured by Spinel. Materials Reports, 2019, 33(18): 3012-3015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070226  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3012
[1] Gu H, Liu Y Y, Wu B H, et al. Journal of Functional Materials, 2013,44(S2),250(in Chinese).顾昊, 刘元云, 吴秉横, 等. 功能材料, 2013,44(S2),250.
[2] Sun Y B, Zhang Y M, Hang J C. Aerospace Materials and Technology, 2008,38(3),11(in Chinese).孙银宝, 张宇民, 韩杰才. 宇航材料工艺, 2008,38(3),11
[3] Song M L, Fu L K. Materials Review, 2012,26(S1),226(in Chinese).宋麦丽, 傅利坤. 材料导报,2012,26(专辑19),226.
[4] Cary R H. Avionic radome materials, National Technical Information Service, UK, 1974.
[5] Sambasivan S, Steiner K A. U.S.patent, US6461415B1, 2002.
[6] Marshall D W. Sampe Journal, 2001,37(5), 53.
[7] Wang F, Wang J H, Xiao Y D. Aerospace Materials and Technology, 2006, 36(6),26(in Chinese).王锋, 王继辉, 肖永栋. 宇航材料工艺, 2006, 36(6),26.
[8] Wang Y G, Liu J L. Applied Ceramic Technology, 2009,6(2),190.
[9] Lyu Z Y, Zhang M X, Geng H R, et al. Chinese Science Bulletin,2008,53(13), 1608(in Chinese).吕震宇, 耿浩然, 张明习, 等. 科学通报, 2008,53(13),1608.
[10] Huang X, Chen N, Huo J C, et al. Journal of Functional Materials, 2014, 45(8), 08111(in Chinese).黄鑫, 陈宁, 霍冀川, 等. 功能材料, 2014, 45(8), 08111.
[11] Tian S, Huo J C, Lei Y H, et al. Journal of Functional Materials, 2013,44(7),979(in Chinese).田帅, 霍冀川, 雷永林, 等. 功能材料,2013,44(7),979.
[12] Deng S F, Zhou Y, Huang F R, et al. Journal of Functional Materials, 2009, 40(4),650(in Chinese).邓诗峰, 周燕, 黄发荣, 等. 功能材料, 2009, 40(4),650.
[13] Wang C P, Liu H L, Huo Y L, et al. Journal of Materials Engineering, 2010(S2),141(in Chinese).王春朋, 刘海林, 霍艳丽, 等. 材料工程, 2010(S2),141.
[14] Wu X J, Li J S, Wang M Y, et al. Ordnance Material Science and Engineering, 2015,38(3),136(in Chinese).武小娟, 李俊寿, 王明远, 等. 兵器材料科学与工程, 2015,38(3), 136.
[15] Zhan W, Wang Z F, Zhang B G, et al. Rare Metal Materials and Engineering, 2009,38(S2),34(in Chinese).占文, 王周福, 张保国, 等. 稀有金属材料与工程, 2009,38(S2),34.
[16] Ma P, Luo J W, Guo W H, et al. Fiber Composites, 2004,21(2),15(in Chinese).麻平,罗进文,郭卫红, 等. 纤维复合材料, 2004,21(2),15.
[17] Wang Z Y, Xu M X, Liang H, et al. Rare Metal Materials and Enginee-ring, 2008,37(S1),565(in Chinese).王政阅, 徐明霞, 梁辉, 等. 稀有金属材料与工程, 2008,37(S1),565.
[18] Wang X P, Tian S. Rare Metal Materials and Engineering, 2005,34 (S1), 716(in Chinese).王新鹏, 田莳. 稀有金属材料与工程. 2005,34(S1),716.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed