Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3152-3155    https://doi.org/10.11896/cldb.19040034
  第20届全国高技术陶瓷学术年会 |
SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能
刘贺, 傅仁利, 何钦江, 李国郡, 王贺
南京航空航天大学材料科学与技术学院,南京 210016
Low Temperature Sintering and Microwave Dielectric Properties of SiO2-BPO4/LMZBS Glass Ceramics
LIU He, FU Renli, HE Qinjiang, LI Guojun, WANG He
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
下载:  全 文 ( PDF ) ( 2579KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相反应法制备xSiO2-(1-x)BPO4微波介质陶瓷,研究了LMZBS玻璃助烧剂对陶瓷物相组成、显微结构、微波介电性能的影响。结果表明:添加LMZBS玻璃可使SiO2-BPO4玻璃陶瓷的烧结温度降低至900 ℃。当LMZBS的添加量为4%(质量分数,下同)时,70SiO2-30BPO4(质量分数/%)在900 ℃烧结2 h时,陶瓷的介电性能最佳(εr=4.0、Q×f=22 600 GHz、τf=-22×10-6/℃)。同时,烧结过程中玻璃相的存在抑制了体系中硼离子的挥发,改善了陶瓷的显微结构,保证了其与银电极具有良好的共烧性。此外,CaTiO3的引入能有效调节70SiO2-30BPO4陶瓷的τf,当CaTiO3添加量为5%(质量分数)、烧结温度为900 ℃时,陶瓷具有最佳的介电性能(εr=4.4, Q×f=17 800 GHz, τf=6×10-6/℃),有望应用于LTCC基板。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘贺
傅仁利
何钦江
李国郡
王贺
关键词:  玻璃陶瓷  LTCC  介电性能  液相烧结    
Abstract: xSiO2-(1-x)BPO4 microwave dielectric ceramics had been prepared by solid-state reaction. The effects of LMZBS glass sintering aid on the phase composition, microstructure and microwave dielectric properties of ceramics was studied. The results show that the addition of LMZBS glass could lower the sintering temperature of SiO2-BPO4 glass ceramics to 900 ℃, and the best dielectric properties of the ceramics(i.e.,εr=4.0, Q×f=22 600 GHz, τf=-22 ×10-6/℃) are obtained when the mass ratio of silicon and boron-phosphors is 70:30 and the addition of LMZBS is 4wt% at 900 ℃ for 2 h. Moreover, the presence of glass phase in the sintering process inhibited boron ions volatilization, which improved the microstructure and ensured excellent co-firing with Ag electrode. In addition, the introduction of CaTiO3 can effectively adjust the τf of 70SiO2-30BPO4 ceramics. The ceramics possess optimum dielectric properties (εr=4.4, Q×f=17 800 GHz, τf=6×10-6/℃) when the addition of CaTiO3 is 5wt% and sintered at 900 ℃, which is a promised candidate for LTCC application.
Key words:  glass/ceramics    LTCC,dielectric properties,liquid phase sintering
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TB321  
基金资助: 江苏省重点研发计划(BE2016050);江苏高校优势学科建设工程
通讯作者:  renlifu@nuaa.deu.cn   
作者简介:  刘贺,2019年3月毕业于南京航空航天大学,获得工程硕士学位。目前主要研究方向为微波介质陶瓷。
傅仁利,南京航空航天大学教授,博士生导师。长期从事材料科学与工程的教学与研究工作,在微电子封装基板与封装技术、白光LED新型荧光材料及光谱调控、微波介质陶瓷材料与射频电子标签、功率电子器件用基板材料和散热技术等领域进行了比较深入的研究工作,发表学术论文120余篇,授权国家发明专利8项,实用新型专利1项,获得省部级科技奖励2项。
引用本文:    
刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
LIU He, FU Renli, HE Qinjiang, LI Guojun, WANG He. Low Temperature Sintering and Microwave Dielectric Properties of SiO2-BPO4/LMZBS Glass Ceramics. Materials Reports, 2019, 33(18): 3152-3155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040034  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3152
[1] Tan X H, Zhou H F, Huan G J, et al. Journal of Electronic Materials, 2017, 46(10), 5950.
[2] Ohashi M, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2005, 25(12), 2877.
[3] Lai Y M, Hong C Y, Jin L H, et al. Ceramics International, 2017,43, 16167.
[4] Hu J, Zhang T Y, Li Z, et al. Materials Review, 2017,31(S2), 107(in Chinese).胡杰, 张天宇, 李真, 等. 材料导报, 2017, 31(专辑30), 107.
[5] Hu C X, Liu P. Journal of Alloys & Compounds, 2013, 559(5), 129.
[6] Xia G B, He L T, Yang D A. Journal of Alloys & Compounds, 2012, 53(1), 70.
[7] Li B, Yue Z X, Ji Z, et al. Materials Letters, 2002, 54(1), 25.
[8] Chen G H, Liu X Y. Journal of Alloys & Compounds, 2007, 431(1), 282.
[9] Zhu H Y, Fu R L, Agathopoulos Simeon, et al. Ceramics International, 2018, 44, 10147.
[10] Li B, Yu Z X, Zhou J, et al. Journal of Inorganic Materials, 2001, 16(5),974(in Chinese).李勃, 岳振星, 周济,等. 无机材料学报, 2001, 16(5),974.
[11] Bian J J, Xie Y R, et al. Journal of the European Ceramic Society, 2018, 38(7), 2747.
[12] Baret G, Baret G. Journal of the Electrochemical Society, 1991, 138(9),2830.
[13] Li H K, Zeng B, Yang X F, et al. Inorganic Chemicals Industry,2014, 46(1),31(in Chinese).李海昆, 曾波, 杨学芬, 等. 无机盐工业, 2014, 46(1),31.
[14] Huang C L, Wang M H. Materials Research Bulletin, 2001, 36(15),2677.
[1] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[2] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[3] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[4] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[5] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[6] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[7] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[8] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[9] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[10] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[11] 张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed