Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21010059-6    https://doi.org/10.11896/cldb.21010059
  无机非金属及其复合材料 |
甲醇辅助连续制备碳纳米管纤维及其性能研究
邱昀淙1, 宋远强1,2, 李亚利1
1 常州大学材料科学与工程学院,江苏 常州 213000
2 浙江清华柔性电子技术研究院,浙江 嘉兴 314000
Methanol-assisted Synthesis of Carbon Nanotube Fibers and Its Mechanical Properties Investigation
QIU Yuncong1, SONG Yuanqiang1,2, LI Yali1
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213000, Jiangsu, China
2 Institute of Flexible Electronics Technology of Tsinghua,Jiaxing 314000, Zhejiang, China
下载:  全 文 ( PDF ) ( 11120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在浮动催化化学气相沉积(FCCVD)法制备碳纳米管连续体的工艺中,一般采用碳源加二茂铁在氢气作用下催化生长碳纳米管连续体。整个工艺过程中需要外部供给大量的氢气,既需要消耗高品质氢能源,又会有较高的安全风险。根据甲醇高温裂解产生氢气的原理,由于甲醇可以在高温下分解生成氢气,本研究将甲醇添加到碳源中,以替代FCCVD工艺中的氢气。实验发现:随着甲醇与乙醇体积比的增加,形成碳纳米管连续体的过程中所需氢气量明显减少;当甲醇与乙醇体积比为6∶1时,能够在纯惰性气体氛围中稳定、连续地制备碳纳米管连续体。对得到的碳纳米管连续体采用532 nm激光拉曼进行表征,其IG/ID值为3.24,表明碳纳米管结晶性良好。连续体经过水收集形成碳纳米管纤维,SEM表征显示纤维中的碳纳米管具有一定的取向性,力学拉伸测试其拉伸强度为330 MPa。同时经计算发现:在达到相同效果的前提下,使用甲醇的效率是纯氢气的2.48倍。因此本工作提供了一种节能、安全的碳纳米管连续制备方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱昀淙
宋远强
李亚利
关键词:  甲醇  碳纳米管纤维  惰性气氛  浮动催化化学气相沉积  替代效率    
Abstract: Carbon sources and ferrocene are generally adopted in the presence of hydrogen for the successive synthesis of carbon nanotube fibers (CNFs) via floating catalytic chemical vapor deposition (FCCVD) process. This method requires a large amount of external hydrogen supply, which not only consumes valuable hydrogen energy, but also leads to high safety risks. As it can produce hydrogen by methanol decomposition at high temperature, in this studly methanol is added into carbon sources aiming for the substitution of hydrogen adoption in FCCVD process. It is found that, with the methanol/ethanol mixture as the carbon sources, CNFs can be produced successively in inert argon atmosphere when the volume ratio of methanol to ethanol is 6∶1. The IG/ID of the 532 nm Raman spectrum of the CNFs is 3.24, which confirms the good crystallinity of the composed CNTs. SEM result indicates that CNTs have preferential orientation in the fibers, thus leading to a high strength of 330 MPa. Furthermore,on the premise of the same effect, the efficiency of using methanol is 2.48 times of that of pure hydrogen. Thus this work provides an economical and safe method for the mass production of CNFs.
Key words:  methanol    carbon nanotube fibers    inert atmosphere    floating catalytic chemical vapor deposition    substitution efficiency
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TB332  
通讯作者:  songyuanqiang@ifet-tsinghua.org   
作者简介:  邱昀淙,2018年6月毕业于西南科技大学,获得工学学士学位,于2018年9月就读常州大学先进碳材料研究中心,主要从事碳纳米管纤维制备及相关复合材料的研究。
宋远强,浙江清华柔性电子技术研究院研究员,硕士研究生导师。2009年获电子科技大学材料物理与化学专业博士学位。研究领域:碳纳米管纤维/膜及其复合材料、硅碳负极材料、柔性二次电池、柔性可穿戴传感器等。已获授权国家发明专利17项,在Advanced Functional MaterialsAdvanced Materials Technology等国际期刊发表学术论文20余篇。担任ACS Applied Materials & InterfacesGlobal Challenges等期刊审稿人。先后以主要研究人员身份参与国防预研、中乌国际合作项目、“973”重大专项等多项国家级课题的研究;负责并完成国家青年基金、面上基金及多项企业横向课题。
引用本文:    
邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
QIU Yuncong, SONG Yuanqiang, LI Yali. Methanol-assisted Synthesis of Carbon Nanotube Fibers and Its Mechanical Properties Investigation. Materials Reports, 2022, 36(8): 21010059-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010059  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21010059
1 Zhang X S, Yang L W, Liu H T, et al. Journal of Nanoscience and Nanotechnology,2018,18(6),4264.
2 Gao E, Li R, Baughman R H. ACS Nano,2020,14(12),17071.
3 Sun J, Lin Y, Sun Z, et al. Materials Today Energy,2019,14,100342.
4 Chen G, Li Y, Bick M, et al. Chemical Reviews,2020,120(8),3668.
5 Hermann A, Ostarhild J, Mirabito Y, et al. Sports Engineering,2020,23,1.
6 Yan W, Dong C, Xiang Y, et al. Materials Today,2020,35,168.
7 Tran T Q, Lee J K Y, Chinnappan A, et al. Journal of Materials Science & Technology,2020,40,99.
8 Zheng Y, Zhang Q, Jin W, et al. Journal of Materials Chemistry A,2020,8(6),2984.
9 Li K, Zhang J. Science China Materials,2018,61(2),210.
10 Chen S, Qiu L, Cheng H M. Chemical Reviews,2020,120(5),2811.
11 Zhang X, Lu W, Zhou G, et al. Advanced Materials,2020,32(5),1902028.
12 Li Y L, Kinloch I A, Windle A H. Science,2004,304(5668),276.
13 Zhang X, Jiang K, Feng C, et al. Advanced Materials,2006,18(12),1505.
14 Wasel W, Kuwana K, Reilly P T A, et al. Carbon,2007,45(4),833.
15 Wang J N, Luo X G, Wu T, et al. Nature Communications,2014,5(1),3848.
16 Feng J M. Fabrication of continuous carbon nanotube fibers by a safe CVD method. Ph.D. Thesis,Tianjin Unveristy,China,2012(in Chinses)
冯建民.安全化学气相法制备连续碳纳米管纤维.博士学位论文,天津大学,2012.
17 Feng J M, Wang R, Li Y L, et al. Carbon,2010,48(13),3817.
18 Gspanna T S, Juckesb S M, Nivenb J F, et al. Carbon,2017,114,160.
19 Hoecker C, Smail F, Pick M, et al. Scientific Reports,2017,7(1),1.
20 Chen W, Zhang A M, Yan X, et al. Studies in Surface Science & Catalysis,2002,142(22),1237.
21 Biris A R, Dan L, Grueneis A, et al. Chemistry of Materials,2008,20(10),3466.
[1] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[2] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[3] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[4] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[5] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[6] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed