Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21071-21078    https://doi.org/10.11896/cldb.21050185
  环境催化材料 |
用于CO2催化加氢In2O3基催化剂的研究进展
李龙泰1, 张春杰1,2, 罗学彬2, 杨彬1, 郭利民1
1 华中科技大学环境科学与工程学院,武汉 430074
2 山西新华防化装备研究院有限公司,太原 030008
Recent Advances in In2O3-based Catalysts for CO2 Hydrogenation
LI Longtai1, ZHANG Chunjie1,2, LUO Xuebin2, YANG Bin1, GUO Limin1
1 School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, China
下载:  全 文 ( PDF ) ( 4474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人类向大气中排放的大量二氧化碳(CO2)造成了一系列环境问题,极大地威胁了人类的生存。CO2催化加氢在众多CO2减排思路中具有独特优势。将CO2与氢气(H2)转化为高附加值的下游化学品,既可以减少大气中CO2浓度,又可以生产具有经济价值的商品,具有良好的应用前景。
近年来,氧化铟(In2O3)催化剂作为一种高效的新型CO2加氢制甲醇的催化剂在学界饱受关注。In2O3表面经过活化后会产生大量氧空位,氧空位周期性产生和湮灭组成的机制抑制了副反应的发生,将CO2高选择性地加氢转化为甲醇。文献中报道In2O3在200~300 ℃时甲醇选择性接近100%,特别是在高温下仍能维持高甲醇选择性。这种高温下优异的性能使In2O3可被用于与沸石分子筛耦合制备催化CO2加氢直接制烃类化合物的双功能催化剂。
In2O3催化剂的缺陷在于其CO2的转化率较低限制了甲醇的产率。学界目前采取了一系列策略对In2O3催化剂进行优化和改进。主要的策略有二:(1)将In2O3负载在其他氧化物载体上;(2)在In2O3体系中引入其他金属元素。将In2O3负载在其他氧化物载体上可以增加In2O3的分散度,增加催化剂中氧空位的含量,增强吸附CO2的能力,稳定关键的表面中间物种。将In2O3负载在ZrO2上是该策略的典型例子,它可以极大地增强催化剂的本征活性。在In2O3体系中引入其他金属元素可以增强H2解离吸附以及H2溢流的能力。文献中已经报道了在In2O3体系中引入Pd、Pt、Cu、Rh、Au、Co、Ni等金属,并取得了良好的效果。
本文归纳了In2O3催化剂用于CO2加氢的研究进展,分别对In2O3的结构、In2O3用于CO2加氢的现状、以及新型In2O3基催化剂的设计与改良三个方面对In2O3在CO2加氢中的应用进行综述,并对In2O3基催化剂用于CO2加氢反应的研究思路以及发展前景进行展望,以期为之后In2O3催化体系用于CO2加氢的研究提供思路及参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李龙泰
张春杰
罗学彬
杨彬
郭利民
关键词:  二氧化碳加氢  甲醇  烃类化合物  氧化铟  氧空位  氢溢流    
Abstract: Alarge amount of carbon dioxide (CO2) emitted by humans into the atmosphere has caused many environmental problems and dramatically threatens humankind’s survival. CO2 catalytic hydrogenation has unique advantages among many CO2 reduction strategies. The conversion of CO2 and hydrogen (H2) into high value-added chemicals has good prospects for application, both in reducing atmospheric CO2 concentrations and producing economically valuable commodities.
In recent years, indium oxide (In2O3) catalysts have received much attention in the academic community as a new and efficient catalyst for the CO2 hydrogenation to methanol. After activation, the In2O3 surface generates a large number of oxygen vacancies, which are periodically generated and annihilated, that inhibit the occurrence of side reactions and hydrogenates CO2 to methanol with high selectivity. It was reported in the literature that In2O3 had a methanol selectivity close to 100% at 200—300 ℃. Especially at higher temperatures, the relatively high methanol selectivity was still maintained. This excellent performance at high temperatures allows In2O3 to be used in coupling with zeolite to design bifunctional catalysts for the CO2 catalytic hydrogenation directly to hydrocarbons.
The drawback of In2O3 catalysts is that their low CO2 conversion limits the methanol yield. The academic community has adopted several strategies to optimize the In2O3-based catalysts. There are two main strategies: (1) loading In2O3 onto other oxide supports and (2) introducing other metal elements into the In2O3 system. Loading In2O3 onto other oxide supports can increase the dispersion of In2O3 species, increase the content of oxygen vacancies, enhance the ability to adsorb CO2, and stabilize key intermediate species. Loading In2O3 onto ZrO2 is a typical example of this strategy, which can significantly enhance the intrinsic activity of the catalyst. The introduction of other metallic elements into the In2O3 can enhance H2 dissociative adsorption and H2 spillover. The introduction of metals such as Pd, Pt, Cu, Rh, Au, Co, and Ni into the In2O3 has been reported in the literature with good results.
This review summarized the research advances of In2O3-based catalysts for CO2 hydrogenation, reviewed the structure of In2O3, the current status of In2O3 for CO2 hydrogenation, and the design and improvement of new In2O3-based catalysts for CO2 hydrogenation, and provided an outlook on the research ideas and development prospects of In2O3-based catalysts for CO2 hydrogenation, to provide thoughts and references for the future research of In2O3 catalytic systems for CO2 hydrogenation.
Key words:  carbon dioxide hydrogenation    methanol    hydrocarbon    indium (Ⅲ) oxide    oxygen vacancies    hydrogen spillover
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  O643  
基金资助: 国家自然科学基金面上项目(21878116);湖北省自然科学基金杰出青年人才项目(2019CFA070)
通讯作者:  yangbin_12@ucas.ac.cn;lmguo@hust.edu.cn   
作者简介:  李龙泰,2018年6月毕业于华中科技大学,获得工学学士学位。现为华中科技大学环境科学与工程学院硕士研究生,在郭利民教授的指导下进行研究。目前主要研究领域为CO2催化加氢。
郭利民,华中科技大学环境科学与工程学院教授,中欧清洁与可再生能源学院兼职教授,主要从事吸附/催化剂制备、VOCs吸附/催化燃烧消除、CO2催化加氢等的应用基础研究;近年来承担国家自然科学基金、国家重点研发计划、日本学术振兴会、湖北省杰出青年人才项目、国家/省重点实验室开放基金、日本九州大学、企业横向课题等项目20余项;在国内外学术期刊发表论文80余篇,申请中国发明专利19项,其中授权专利11项,专利转让2项。目前担任中国材料研究学会环境材料分委会委员、中国环境科学学会挥发性有机物污染防治专委会常委、湖北省环境科学学会青年工作委员会副主任委员、《能源环境保护》编委及Chinese Chemical Letters青年编委。
杨彬,博士毕业于华中科技大学环境科学与工程学院,现在国科大杭州高等研究院从事博士后工作,主要研究方向为催化剂设计和二氧化碳多相催化。
引用本文:    
李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
LI Longtai, ZHANG Chunjie, LUO Xuebin, YANG Bin, GUO Limin. Recent Advances in In2O3-based Catalysts for CO2 Hydrogenation. Materials Reports, 2021, 35(21): 21071-21078.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050185  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21071
1 Friedlingstein P, O'Sullivan M, Jones M W, et al.Earth System Science Data, 2020,12(4), 3269.
2 Mercer J H. Nature, 1978,271(5643), 321.
3 Rogelj J, Elzen M Den, Höhne N, et al.Nature, 2016,534(7609), 631.
4 Wang W, Wang S, Ma X, et al.Chemical Society Reviews, 2011,40(7), 3703.
5 Meng F, Chen S, Cheng S, et al.Journal of Cleaner Production, 2021,293, 126203.
6 Bui M, Adjiman C S, Bardow A, et al.,Energy & Environmental Science, 2018,11(5), 1062.
7 Porosoff M D, Yan B, Chen J G. Energy & Environmental Science, 2016,9(1), 62.
8 Olah G A. Angewandte Chemie International Edition, 2005,44(18), 2636.
9 Sun J T, Metcalfe I S, Sahibzada M. Industrial & Engineering Chemistry Research, 1999,38(10), 3868.
10 Wang J, Zhang G, Zhu J, et al.. ACS Catalysis, 2021, 1406.
11 Martin O, Martin A J, Mondelli C, et al.Angewandte Chemie Internatio-nal Edition, 2016,55(21), 6261.
12 Gao P, Dang S, Li S, et al.ACS Catalysis, 2018,8(1), 571.
13 Gao P, Li S G, Bu X N, et al.Nature Chemistry, 2017,9(10), 1019.
14 Karazhanov S Z, Ravindran P, Vajeeston P, et al.Physical Review B, 2007,76(7), 075129.
15 Liu D, Lei W, Zou B, et al.Journal of Applied Physics, 2008,104(8), 083506.
16 Yang B, Li L, Jia Z, et al.Chinese Chemical Letters, 2020,31(10), 2627.
17 Dang S, Qin B, Yang Y, et al. Science Advances, 2020,6(25), eaaz2060.
18 Wang J, Liu C Y, Senftle T P, et al.ACS Catalysis, 2019,10(5), 3264.
19 Walsh A, Catlow C R A. Journal of Materials Chemistry, 2010,20(46), 10438.
20 Lorenz H, Turner S, LebedevO I, et al. Applied Catalysis A: General, 2010,374(1-2), 180.
21 Ye J, Liu C, Mei D, et al.ACS Catalysis, 2013,3(6), 1296.
22 Ye J, Liu C, Ge Q. The Journal of Physical Chemistry C, 2012,116(14), 7817.
23 Qin B, Li S. Physical Chemistry Chemical Physics, 2020,22(6), 3390.
24 Frei M S, Capdevila-Cortada M, García-Muelas R, et al.Journal of Catalysis, 2018,361, 313.
25 Cao A, Wang Z, Li H, et al.ACS Catalysis, 2021,11(3), 1780.
26 Dou M, Zhang M, Chen Y, et al.New Journal of Chemistry, 2018,42(5), 3293.
27 Dou M, Zhang M, Chen Y, et al.Surface Science, 2018,672, 7.
28 Guo L, Sun J, Ge Q, et al.Journal of Materials Chemistry A, 2018,6(46), 23244.
29 Ni Y, Chen Z, Fu Y, et al.Nature Communications, 2018,9(1), 3457.
30 Rui N, Wang Z, Sun K, et al. Applied Catalysis B: Environmental, 2017,218, 488.
31 Sun K, Fan Z, Ye J, et al.Journal of CO2 Utilization, 2015,12, 1.
32 Chen T, Cao C, Chen T, et al.ACS Catalysis, 2019,9(9), 8785.
33 Yao L, Shen X, Pan Y, et al. Journal of Catalysis, 2019,372, 74.
34 Dostagir N H M D, Thompson C, Kobayashi H, et al.Catalysis Science & Technology, 2020,10(24), 8196.
35 Han Z, Tang C, Wang J, et al.Journal of Catalysis, 2021,394, 236.
36 Sun K, Rui N, Zhang Z, et al.Green Chemistry, 2020,22(15), 5059.
37 Rui N, Zhang F, Sun K, et al. ACS Catalysis, 2020,10(19), 11307.
38 Jia X, Sun K, Wang J, et al.Journal of Energy Chemistry, 2020,50, 409.
39 Bavykina A, Yarulina I, Al Abdulghani A J, et al.ACS Catalysis, 2019, 6910.
40 Shi Z, Tan Q, Tian C, et al.Journal of Catalysis, 2019,379, 78.
41 Chou C, Lobo R F. Applied Catalysis A: General, 2019,583, 117144.
42 Ahmad K, Upadhyayula S. International Journal of Hydrogen Energy, 2020,45(1), 1140.
43 Devetta L, Giovanzana A, Canu P, et al.Catalysis Today, 1999,48(1-4), 337.
44 Weatherbee G D, Bartholomew C HJournal of Catalysis, 1982,77(2), 460.
45 Frei M S, Mondelli C, Garcia-Muelas R, et al.Nature Communications, 2019,10(1), 3377.
46 Jiang H, Lin J, Wu X, et al.Journal of CO2 Utilization, 2020,36, 33.
47 García-Trenco A, Regoutz A, White E R, et al. Applied Catalysis B: Environmental, 2018,220, 9.
48 Ye J, Ge Q, Liu C. Chemical Engineering Science, 2015,135, 193.
49 Neumann M, D. Teschner D, Knop-Gericke A, et al.Journal of Catalysis, 2016,340, 49.
50 Wu P, Yang B. Catalysis Science & Technology, 2019,9(21), 6102.
51 Snider J L, Streibel V, Hubert M A, et al.ACS Catalysis, 2019,9(4), 3399.
52 Li M M J, Zou H, Zheng J, et al.Angewandte Chemie International Edition, 2020,59(37), 16039.
[1] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[2] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[3] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[4] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[5] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[6] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[7] 金鹤, 周灵平, 朱家俊, 符立才, 杨武霖, 李德意. 空间太阳电池玻璃盖板表面超薄ITO防静电层的设计及制备工艺*[J]. 《材料导报》期刊社, 2017, 31(17): 158-162.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed