Recent Advances in In2O3-based Catalysts for CO2 Hydrogenation
LI Longtai1, ZHANG Chunjie1,2, LUO Xuebin2, YANG Bin1, GUO Limin1
1 School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, China
Abstract: Alarge amount of carbon dioxide (CO2) emitted by humans into the atmosphere has caused many environmental problems and dramatically threatens humankind’s survival. CO2 catalytic hydrogenation has unique advantages among many CO2 reduction strategies. The conversion of CO2 and hydrogen (H2) into high value-added chemicals has good prospects for application, both in reducing atmospheric CO2 concentrations and producing economically valuable commodities. In recent years, indium oxide (In2O3) catalysts have received much attention in the academic community as a new and efficient catalyst for the CO2 hydrogenation to methanol. After activation, the In2O3 surface generates a large number of oxygen vacancies, which are periodically generated and annihilated, that inhibit the occurrence of side reactions and hydrogenates CO2 to methanol with high selectivity. It was reported in the literature that In2O3 had a methanol selectivity close to 100% at 200—300 ℃. Especially at higher temperatures, the relatively high methanol selectivity was still maintained. This excellent performance at high temperatures allows In2O3 to be used in coupling with zeolite to design bifunctional catalysts for the CO2 catalytic hydrogenation directly to hydrocarbons. The drawback of In2O3 catalysts is that their low CO2 conversion limits the methanol yield. The academic community has adopted several strategies to optimize the In2O3-based catalysts. There are two main strategies: (1) loading In2O3 onto other oxide supports and (2) introducing other metal elements into the In2O3 system. Loading In2O3 onto other oxide supports can increase the dispersion of In2O3 species, increase the content of oxygen vacancies, enhance the ability to adsorb CO2, and stabilize key intermediate species. Loading In2O3 onto ZrO2 is a typical example of this strategy, which can significantly enhance the intrinsic activity of the catalyst. The introduction of other metallic elements into the In2O3 can enhance H2 dissociative adsorption and H2 spillover. The introduction of metals such as Pd, Pt, Cu, Rh, Au, Co, and Ni into the In2O3 has been reported in the literature with good results. This review summarized the research advances of In2O3-based catalysts for CO2 hydrogenation, reviewed the structure of In2O3, the current status of In2O3 for CO2 hydrogenation, and the design and improvement of new In2O3-based catalysts for CO2 hydrogenation, and provided an outlook on the research ideas and development prospects of In2O3-based catalysts for CO2 hydrogenation, to provide thoughts and references for the future research of In2O3 catalytic systems for CO2 hydrogenation.
1 Friedlingstein P, O'Sullivan M, Jones M W, et al.Earth System Science Data, 2020,12(4), 3269. 2 Mercer J H. Nature, 1978,271(5643), 321. 3 Rogelj J, Elzen M Den, Höhne N, et al.Nature, 2016,534(7609), 631. 4 Wang W, Wang S, Ma X, et al.Chemical Society Reviews, 2011,40(7), 3703. 5 Meng F, Chen S, Cheng S, et al.Journal of Cleaner Production, 2021,293, 126203. 6 Bui M, Adjiman C S, Bardow A, et al.,Energy & Environmental Science, 2018,11(5), 1062. 7 Porosoff M D, Yan B, Chen J G. Energy & Environmental Science, 2016,9(1), 62. 8 Olah G A. Angewandte Chemie International Edition, 2005,44(18), 2636. 9 Sun J T, Metcalfe I S, Sahibzada M. Industrial & Engineering Chemistry Research, 1999,38(10), 3868. 10 Wang J, Zhang G, Zhu J, et al.. ACS Catalysis, 2021, 1406. 11 Martin O, Martin A J, Mondelli C, et al.Angewandte Chemie Internatio-nal Edition, 2016,55(21), 6261. 12 Gao P, Dang S, Li S, et al.ACS Catalysis, 2018,8(1), 571. 13 Gao P, Li S G, Bu X N, et al.Nature Chemistry, 2017,9(10), 1019. 14 Karazhanov S Z, Ravindran P, Vajeeston P, et al.Physical Review B, 2007,76(7), 075129. 15 Liu D, Lei W, Zou B, et al.Journal of Applied Physics, 2008,104(8), 083506. 16 Yang B, Li L, Jia Z, et al.Chinese Chemical Letters, 2020,31(10), 2627. 17 Dang S, Qin B, Yang Y, et al. Science Advances, 2020,6(25), eaaz2060. 18 Wang J, Liu C Y, Senftle T P, et al.ACS Catalysis, 2019,10(5), 3264. 19 Walsh A, Catlow C R A. Journal of Materials Chemistry, 2010,20(46), 10438. 20 Lorenz H, Turner S, LebedevO I, et al. Applied Catalysis A: General, 2010,374(1-2), 180. 21 Ye J, Liu C, Mei D, et al.ACS Catalysis, 2013,3(6), 1296. 22 Ye J, Liu C, Ge Q. The Journal of Physical Chemistry C, 2012,116(14), 7817. 23 Qin B, Li S. Physical Chemistry Chemical Physics, 2020,22(6), 3390. 24 Frei M S, Capdevila-Cortada M, García-Muelas R, et al.Journal of Catalysis, 2018,361, 313. 25 Cao A, Wang Z, Li H, et al.ACS Catalysis, 2021,11(3), 1780. 26 Dou M, Zhang M, Chen Y, et al.New Journal of Chemistry, 2018,42(5), 3293. 27 Dou M, Zhang M, Chen Y, et al.Surface Science, 2018,672, 7. 28 Guo L, Sun J, Ge Q, et al.Journal of Materials Chemistry A, 2018,6(46), 23244. 29 Ni Y, Chen Z, Fu Y, et al.Nature Communications, 2018,9(1), 3457. 30 Rui N, Wang Z, Sun K, et al. Applied Catalysis B: Environmental, 2017,218, 488. 31 Sun K, Fan Z, Ye J, et al.Journal of CO2 Utilization, 2015,12, 1. 32 Chen T, Cao C, Chen T, et al.ACS Catalysis, 2019,9(9), 8785. 33 Yao L, Shen X, Pan Y, et al. Journal of Catalysis, 2019,372, 74. 34 Dostagir N H M D, Thompson C, Kobayashi H, et al.Catalysis Science & Technology, 2020,10(24), 8196. 35 Han Z, Tang C, Wang J, et al.Journal of Catalysis, 2021,394, 236. 36 Sun K, Rui N, Zhang Z, et al.Green Chemistry, 2020,22(15), 5059. 37 Rui N, Zhang F, Sun K, et al. ACS Catalysis, 2020,10(19), 11307. 38 Jia X, Sun K, Wang J, et al.Journal of Energy Chemistry, 2020,50, 409. 39 Bavykina A, Yarulina I, Al Abdulghani A J, et al.ACS Catalysis, 2019, 6910. 40 Shi Z, Tan Q, Tian C, et al.Journal of Catalysis, 2019,379, 78. 41 Chou C, Lobo R F. Applied Catalysis A: General, 2019,583, 117144. 42 Ahmad K, Upadhyayula S. International Journal of Hydrogen Energy, 2020,45(1), 1140. 43 Devetta L, Giovanzana A, Canu P, et al.Catalysis Today, 1999,48(1-4), 337. 44 Weatherbee G D, Bartholomew C HJournal of Catalysis, 1982,77(2), 460. 45 Frei M S, Mondelli C, Garcia-Muelas R, et al.Nature Communications, 2019,10(1), 3377. 46 Jiang H, Lin J, Wu X, et al.Journal of CO2 Utilization, 2020,36, 33. 47 García-Trenco A, Regoutz A, White E R, et al. Applied Catalysis B: Environmental, 2018,220, 9. 48 Ye J, Ge Q, Liu C. Chemical Engineering Science, 2015,135, 193. 49 Neumann M, D. Teschner D, Knop-Gericke A, et al.Journal of Catalysis, 2016,340, 49. 50 Wu P, Yang B. Catalysis Science & Technology, 2019,9(21), 6102. 51 Snider J L, Streibel V, Hubert M A, et al.ACS Catalysis, 2019,9(4), 3399. 52 Li M M J, Zou H, Zheng J, et al.Angewandte Chemie International Edition, 2020,59(37), 16039.