Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11077-11082    https://doi.org/10.11896/cldb.20010035
  无机非金属及其复合材料 |
化学气相沉积法制备SiC纳米线的研究进展
刘显刚1, 安建成1,2, 孙佳佳1, 张骞1, 秦艳濛1, 刘新红1,*
1 郑州大学河南省高温功能材料重点实验室,郑州 450052;
2 通达耐火技术股份有限公司,北京 100085
Research Progress in Fabrication of SiC Nanowires via Chemical Vapor Deposition Method
LIU Xiangang1, AN Jiancheng1,2, SUN Jiajia1, ZHANG Qian1, QIN Yanmeng1, LIU Xinhong1,*
1 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China;
2 Beijing Tongda Refractory Technologies Co., Ltd., Beijing 100085, China
下载:  全 文 ( PDF ) ( 3469KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SiC纳米线具有优良的物理、化学、电学和光学等性能,在光电器件、光催化降解、能量存储和结构陶瓷等方面得到广泛应用。其制备方法多种多样,其中化学气相沉积法(CVD)制备SiC纳米线因具有工艺简单、组成可控和重复性好等优点而备受关注。
近年来,在化学气相沉积法制备SiC纳米线以及调控其显微结构方面取得了较多成果。采用Si粉、石墨粉和树脂粉等低成本原料以及流化床等先进设备,通过化学气相沉积法制备出线状、链珠状、竹节状、螺旋状以及核壳结构等不同尺度、形貌各异的SiC纳米线,并且有的SiC纳米线具有优良的发光性能、场发射性能和吸波性能等,为制备新型结构和形貌的SiC纳米线及开发新功能性的SiC纳米器件提供了重要参考。
目前,未添加催化剂时,利用气相沉积法制备的SiC纳米线虽然纯度较高,但存在产物形貌、尺度和结晶方向等可控性差,制备温度较高和产率相对较低的问题。而添加催化剂、熔盐以及氧化物辅助可明显降低SiC纳米线的制备温度,提高反应速率以及产率,但易在SiC纳米线中引入杂质。将来应在提高SiC纳米线的纯度、去除杂质方面开展深入研究;还应注重低成本、规模化制备SiC纳米线的研究,采用相应措施调控SiC纳米线的显微结构,以拓宽SiC纳米线的应用领域。
本文综述了目前国内外采用化学气相沉积制备SiC纳米线的方法,分析总结了无催化剂、催化剂、熔盐以及氧化物辅助等各种制备方法的优缺点,并对未来的研究进行展望,期望为SiC纳米线的低成本、规模化制备和应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘显刚
安建成
孙佳佳
张骞
秦艳濛
刘新红
关键词:  SiC纳米线  化学气相沉积  气-固机理  气-液-固机理  显微结构    
Abstract: SiC nanowires have been widely used in various fields such as photoelectric devices, photocatalysis, energy storage and structural ceramics, owing to their excellent physical, chemical, electrical and optical properties. Among various fabricated methods, the chemical vapor deposition (CVD) method is attracting increasingly attention on account of its simple process, controllable composition and good repeatability.
In recent years, impressive strides have been made in fabrication of SiC nanowires by CVD method and optimizing the microstructure of SiC nanowires. SiC nanowires with various morphologies such as wire-like, chain-bead, bamboo-like, spiral-like and core-shell structures have been fabricated via CVD method using low-cost Si, graphite and resin powders, and adopting advanced fluid-bed equipment. And the fabricated SiC nanowires have excellent luminous properties, field emission properties and wave absorbing properties. The previous works have established a new avenue for fabrication of SiC nanowires with desirable structures and morphologies as well as the development of newly functional SiC nano devices.
At present, though the purity of SiC nanowires fabricated by CVD via catalyst-free method is high, many drawbacks including poor controllability of morphology, size and crystallization direction as well as high fabrication temperature and low yield restrict its development. The catalysts, molten salts and oxides assisted CVD method can significantly reduce the fabrication temperature, increase the reaction rate and yield of SiC nanowires, but it is difficult to eliminate the introduced impurities in SiC nanowires. Therefore, the systematic study should be focused on increa-sing the purity of SiC nanowires and removing impurities in the future; attention should also be paid to develop new routes for low-cost and large-scale fabrication of SiC nanowires, and the microstructure of SiC nanowires should be further optimized in order to expand their application fields.
This review offers a retrospection of the research efforts with respect to SiC nanowires fabrication by CVD method both at home and abroad, and provides elaborate descriptions about the advantages and disadvantages of various preparation methods such as catalysts-free, catalysts-assisted, molten salts assisted and oxide-assisted. The key issues and effective research methods are proposed to provide reference for low-cost, large-scale production and application of SiC nanowires.
Key words:  SiC nanowires    chemical vapor deposition    vapor-solid mechanism    vapor-liquid-solid mechanism    microstructure
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TQ175  
基金资助: 国家自然科学基金(51872266; 51672253)
通讯作者:  *liuxinhong@zzu.edu.cn   
作者简介:  刘显刚,2018年6月毕业于河南工业大学,获得工学学士学位。现为郑州大学河南省高温功能材料重点实验室硕士研究生,在刘新红教授的指导下进行研究。目前主要研究领域为含碳材料中原位SiC纳米线的生成、生长。刘新红,郑州大学材料科学与工程学院教授、博士研究生导师。1996年7月本科毕业于河南师范大学化学教育专业,2008年7月在郑州大学材料加工工程专业取得博士学位,日本静冈大学(2014)和英国艾克塞特大学(2019)访问学者。主要从事纳米材料的制备、表征及应用、氧化物-非氧化物复合材料的研究与开发、新型含碳材料的开发与应用等工作。在Advanced Functional Materials、Corrosion Science、《材料导报》《硅酸盐学报》等国内外学术期刊发表论文100余篇。
引用本文:    
刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
LIU Xiangang, AN Jiancheng, SUN Jiajia, ZHANG Qian, QIN Yanmeng, LIU Xinhong. Research Progress in Fabrication of SiC Nanowires via Chemical Vapor Deposition Method. Materials Reports, 2021, 35(11): 11077-11082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010035  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11077
1 Guo C C, Cheng L F, Ye F. Materials China,2019,38(9),831(in Chinese).
郭楚楚,成来飞,叶昉.中国材料进展,2019,38(9),831.
2 Wei J, Zhang Q, Zhao L L, et al. Journal of Nanoscience and Nanotech?nolgy,2018,18(2),1224.
3 Kim J H, Choi S C. Journal of the Korean Ceramic Society,2018,55(3),285.
4 Wang F, Qin X F, Zhu D D, et al. Materials Science in Semiconductor Processing,2015,29(1),155.
5 Li Z J, Gao W D, Meng A L, et al. The Journal of Physical Chemistry C,2009,113(1),91.
6 Zhang Y F, Sheng L M, FangY H, et al. Chemical Physics Letters,2017,678(1),17.
7 Liu S, Wang J G. Physica E: Low?dimensional Systems and Nanostructures,2016,81(1),268.
8 Liu H T, Huang Z H, Fang M H, et al. Journal of Crystal Growth,2015,419(1),20.
9 Zhou X T, Wang N, Lai H L, et al. Applied Physics Letters,1999,74(26),3942.
10 Yang G Z, Cui H, Sun Y, et al. Rural Economy,2009,113(36),15969.
11 Wei J, Li K Z, Chen J, et al. Journal of Crystal Growth,2011,335(1),160.
12 Chen J J, Shi Q, Xin L P, et al. Current Nanoscience,2012,8(2),226.
13 Wu R B, Pan Y, Yang G Y, et al. The Journal of Physical Chemistry C,2007,111(17),6233.
14 Li B B, Mao B X, Huang H Q, et al. International Journal of Applied Ceramic Technology,2020,00(1),1.
15 Li J, Zhu X L, Ding P, et al. Nanotechnology,2009,20(14),145602.
16 Wei J, Li K Z, Chen J, et al. Journal of the American Ceramic Society,2013,96(2),627.
17 Duan X F, Lieber C M. Journal of the American Chemical Society,2000,122(1),188.
18 Zhang B C, Wang H, He L, et al. Nano Letters,2017,17(12),7323.
19 Wu S T, Wang L C, Yi X Y, et al. Journal of Applied Physics,2017,122(20),205302.
20 Amnon R, Tamir F,Yarden D, et al. The Journal of Physical Chemistry C,2018,122(23),12413.
21 Huang M H, Wu Y Y, Feick H N, et al. Advanced Materials,2001,13(2),113.
22 Kenry, Lim C T. Progress in Materials Science,2013,58(5),705.
23 Prakash J. Silicon?based Nanomaterials,2013,187(1),179.
24 Krishnan B, Kotamraju S P, Sundaresan S G, et al. Materials Science Forum,2010,645?648(1),187.
25 Panda S K, Sengupta J, Jacob C. Journal of Nanoscience and Nanotech?nology,2010,10(5),3046.
26 Zhang Y F, Nishitani?Gamo M, Xiao C Y, et al. Journal of Applied Phy?sics,2002,91(9),6066.
27 Lopez?Camacho E, Fernandez M, Gomez?Aleixandre C. Journal of Phy?sics D: Applied Physics,2009,42(4),45302.
28 Nazarudin N F F B, Azizan S N A B, Rahman S A, et al. Thin Solid Films,2014,570(Part B),243.
29 Goh B T, Abdul R S. Journal of Crystal Growth,2014,407(1),25.
30 Zhang H F, Wang C M, Wang L S. Nano Letters,2002,2(9),941.
31 Sun Y, Cui H, Yang G Z, et al. CrystEngComm,2010,12(4),1134.
32 Kohno H, Yagi K, Niioka H. Japanese Journal of Applied Physics,2011,50(1),18001.
33 Zheng H W, Zhao T T, Tian Y, et al. Materials Letters,2014,120(1),13.
34 Yu J S, Liu H S, Zhou X G, et al. IOP Conference Series: Materials Science and Engineering,2019,504(1),12039.
35 Wang X C, Tang B, Gao F M, et al. Journal of Physics D: Applied Phy?sics,2011,44(24),245404.
36 Kim H Y, Bae S Y, Kim N S, et al. Chemical Communications,2003,9(20),2634.
37 Zhang M, Zhao J, Li Z J, et al. Journal of Solid State Chemistry,2016,243(1),247.
38 Wang J K, Zhang Y Z, Li J Y, et al. Powder Technology,2017,317(1),209.
39 Li Z J, Ma F L, Zhang M, et al. The Journal of Chemical Physics,2015,31(6),1191(in Chinese).
李镇江,马凤麟,张猛,等.物理化学学报,2015,31(6),1191.
40 Wu R B, Zhou K, Wei J, et al. The Journal of Physical Chemistry C,2012,116(23),12940.
41 Zhang J, Liu X H, Jia Q L, et al. Ceramics International,2015,42(3),4600.
42 Zhang J, Jia Q L, Zhang S M, et al. Ceramics International,2015,42(2),2227.
43 Zhang D Q, Alkhateeb A, Han H M, et al. Nano Letters,2003,3(7),983.
44 Ho G W, Wong A S W, Kang D J, et al. Nanotechnology,2004,15(8),996.
45 Li L, Chu Y H, Li H J, et al. Ceramics International,2014,40(3),4455.
46 Ke K C, Jiang M, Ding L J, et al. Journal of the American Ceramic Society,2019,102(6),3070.
47 Li H J, He Z B, Chu Y H, et al. Materials Letters,2013,109(1),275.
48 Hu P, Dong S, Zhang D Y, et al. Ceramics International,2016,42(1,Part B),1581.
49 Arendt R H. Journal of Applied Physics,1973,44(7),3300.
50 Zhang J. Study on SiC nanowires assisted by molten salt and their photoluminescence properties. Master's Thesis, Zhengzhou University, China,2016(in Chinese).
张举.熔盐辅助制备SiC纳米线及其光致发光性能研究.硕士学位论文,郑州大学,2016.
51 Xie W, Moebus G, Zhang S W. Journal of Materials Chemistry,2011,21(45),18325.
52 Wu R B, Zhou K, Yang Z H, et al. CrystEngComm,2013,15(3),570.
53 Sun Z G, Qiao X J, Ren Q G, et al. Advanced Powder Technology,2016,27(4),1552.
54 Liu R Z, Liu M L, Chang J X, et al. Chemical Vapor Deposition,2015,21(7?9),196.
55 Longkullabutra H, Nhuapeng W, Thamjaree W. Current Applied Physics,2012,12(S2),S112.
56 Chen X Y, Qin Y M, Jia Q L, et al. Materials Letters,2019,234(1),187.
57 Chen X Y, Zhang Q, Zhou Y, et al. Ceramics International,2018,44(18),22890.
58 Chen X Y, Liu X H, Geng X J, et al. Ceramics International,2018,44(10),11204.
59 Chang J X, Liu R Z, Liu M L, et al. Key Engineering Materials,2016,697(1),841.
60 Yu W P, Zheng Y, Yang E, et al. Journal of Rare Earths,2010,28(3),365.
61 Han W Q, Redlich P, Ernst F, et al. Applied Physics Letters,1999,75(13),1875.
62 Jintakosol T, Singjai P. Key Engineering Materials,2007,353?358(1),2171.
[1] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[2] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[3] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[4] 尹雪亮, 刘洋, 李丽颖, 宫长伟, 杜成武, 毛榜玉, 彭可武. 添加ZrO2对CaAl4O7材料烧结的影响[J]. 材料导报, 2020, 34(Z1): 144-147.
[5] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[6] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[7] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[8] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[9] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[10] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[11] 李红霞, 李保卫, 邓磊波, 徐鹏飞, 刘中兴. 微波热处理温度对尾矿微晶玻璃晶化过程及性能的影响[J]. 材料导报, 2019, 33(20): 3401-3407.
[12] 易帅, 曾鲁举, 邓丽娜, 薛飞, 谢金莉, 刘艳改, 房明浩, 吴小文, 黄朝晖. 液相浸渗法制备CaAl12O19/(MgAl2O4-Al2O3)复相陶瓷[J]. 材料导报, 2019, 33(18): 3166-3169.
[13] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[14] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[15] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed