Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12053-12056    https://doi.org/10.11896/cldb.19110186
  无机非金属及其复合材料 |
氮化温度对MgO-C耐火材料结构和性能的影响
王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Effect of Nitriding Temperature on Structure and Properties of MgO-C Refractories
WANG Xing, CHEN Yang, CAO Guilian, DENG Chengji, DING Jun, YU Chao, ZHU Hongxi
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 5213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了优化MgO-C耐火材料的性能,以电熔镁砂、鳞片石墨和负载硝酸铁的硅粉为主要原料,热固性酚醛树脂为结合剂,经高温氮化制备了MgO-C耐火材料,并研究了催化剂的添加及不同氮化温度对MgO-C耐火材料结构和性能的影响。结果表明:氮化温度为1 200 ℃时,与不含催化剂的试样相比,催化剂的添加促进了α-Si3N4、SiC和Mg2SiO4的生成,并显著改善了材料的机械强度,含1%催化剂的试样中生成的α-Si3N4呈颗粒状和晶须状,并交织生长,Mg2SiO4以块状形貌存在;随着氮化温度升高到1 300 ℃,有少量的针状Mg2SiO4生成,且块状Mg2SiO4晶粒长大,此时材料表现出较好的机械强度,其常温抗折强度和常温耐压强度分别为10.82 MPa和55.17 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杏
陈洋
曹桂莲
邓承继
丁军
余超
祝洪喜
关键词:  MgO-C耐火材料  催化剂  氮化温度  物相组成  显微结构    
Abstract: In order to optimize the performance of MgO-C refractories, the fused magnesia, flake graphite and silicon powder-loaded ferric nitrate were used as the raw materials, and the thermosetting phenolic resin was used as the binder to prepare MgO-C refractories by high temperature nitriding. The effects of the addition of catalysts and different nitriding temperatures on the structure and properties of MgO-C refractories were investigated. The results show that when the nitriding temperature was 1 200 ℃, the addition of catalyst could promote the generation of α-Si3N4, SiC and Mg2SiO4, and significantly improved the mechanical strength of the material compared with the sample without catalyst. The α-Si3N4 formed in the sample with 1% catalyst showed granular and whisker-like morphologies, which were interwoven. Mg2SiO4 existed in a blocky morphology. As the nitriding temperature increased to 1 300 ℃, a small amount of acicular Mg2SiO4 was formed, and the blocky Mg2SiO4 grains grew. At this time, the material exhibited good mechanical strength, and the cold modulus of rupture and cold crushing strength were 10.82 MPa and 55.17 MPa, respectively.
Key words:  MgO-C refractories    catalyst    nitriding temperature    phase composition    microstructure
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TQ175  
基金资助: 国家自然科学基金(51574187;51502215;51602232);湖北省自然科学基金创新群体项目(2018CFA022)
通讯作者:  dingjun@wust.edu.cn   
作者简介:  王杏,现为武汉科技大学省部共建耐火材料与冶金国家重点实验室博士研究生,主要研究方向为碳复合耐火材料。
丁军,武汉科技大学副教授,硕士研究生导师,入选湖北省“楚天学者计划”楚天学子。围绕耐火材料设计制备、耐火原料高值高效利用及材料性能表征等领域开展研究。主持和参与国家科技支撑计划、973计划前期专项和国家自然科学基金等10余项,以第一或通讯作者发表论文60余篇,其中SCI收录论文35篇,以第一完成人授权国家发明专利10项,合作制定行业标准1项,获省部级科研奖励4项。
引用本文:    
王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
WANG Xing, CHEN Yang, CAO Guilian, DENG Chengji, DING Jun, YU Chao, ZHU Hongxi. Effect of Nitriding Temperature on Structure and Properties of MgO-C Refractories. Materials Reports, 2021, 35(12): 12053-12056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110186  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12053
1 Cao G L, Deng C J, Chen Y, et al. Ceramics International, 2020, 46(10), 16860.
2 Yu C, Zhu H X, Yuan W J,et al. Journal of Alloys and Compounds, 2013, 579(5), 348.
3 Cheng F, Wang J K, Li F L, et al. Refractory, 2015, 49(5), 394 (in Chinese).
程峰, 王军凯, 李发亮, 等. 耐火材料, 2015, 49(5), 394.
4 Chen Y, Deng C J, Wang X, et al. Journal of the Chinese Ceramic Society, 2019, 47(12), 1834 (in Chinese).
陈洋, 邓承继, 王杏, 等. 硅酸盐学报, 2019, 47(12), 1834.
5 Liu M Q, Huang J T, Xiong Q M, et al. Nanomaterials, 2019, 9, 1242.
6 Zhu T B, Li Y W, Sang S B, et al. Ceramics International, 2014, 40(3), 4333.
7 Halder D, Midya P R, Das S, et al. Ceramics International, 2016, 42(14), 15826.
8 Sarkar R, Nash B P, Sohn H Y. Journal of the European Ceramic Society, 2020, 40(2), 529.
9 Bahtli T, Hopa D Y, Bostanci W M,et al. Ceramics International, 2018, 44(6), 6780.
10 Ma B Y, Zhu Q, Sun Y,et al. Journal of Materials Science & Technology, 2010, 26(8), 715.
11 Luo W, Zhu B Q, Li X C,et al. International Journal of Materials Research, 2016, 107(4), 333.
12 Lua A P, Renda C G, Lucas A A,et al. Ceramics International, 2017, 43(11), 8171.
13 Talabi S I, Luz A P, Lucas A A,et al. Ceramics International, 2018, 44(4), 3816.
14 Cheng F,Wang J K, Tan C, et al. Journal of the Chinese Ceramic Society, 2017, 45(3), 459 (in Chinese).
程峰, 王军凯, 谭操, 等. 硅酸盐学报, 2017, 45(3), 459.
15 Zhu T B, Li Y W, Sang S B. Journal of Alloys and Compounds, 2019, 783, 990.
16 Ma B Y, Yu J K. Rare Metals, 2009, 28(4), 367.
17 Chai Z N, Ding J, Deng C J,et al. Advanced Powder Technology, 2016, 27(4), 1637.
18 Ding J, Yu C, Liu J P,et al. Materials Chemistry and Physics, 2018, 206, 193.
19 Chen Y, Deng C J, Wang X, et al. Construction and Building Materials, 2020, 240, 117964.
20 Zhao W G, Gu Y J, Li F L,et al. Bulletin of the Chinese Ceramic Society, 2016, 35(4), 1106 (in Chinese).
赵万国, 古亚军, 李发亮, 等. 硅酸盐通报, 2016, 35(4), 1106.
21 Zheng C S, Yan Q Z, Xia M, et al.Ceramics International, 2012, 38(1), 487.
[1] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[2] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[3] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[4] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[5] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[6] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[7] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[8] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[9] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[10] 尹雪亮, 刘洋, 李丽颖, 宫长伟, 杜成武, 毛榜玉, 彭可武. 添加ZrO2对CaAl4O7材料烧结的影响[J]. 材料导报, 2020, 34(Z1): 144-147.
[11] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[12] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[13] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[14] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[15] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed