Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11001-11006    https://doi.org/10.11896/cldb.20060211
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
基于固废炭基催化剂的稻壳热解气体提质研究
赵丹丹1,2,3,4, 王舒笑1,2,3,4, 顾菁1,2,3,4, 单锐1,2,3,4, 袁浩然1,2,3,4
1 中国科学院广州能源研究所,广州 510640;
2 南方海洋科学与工程广东省实验室, 广州 511458;
3 中国科学院可再生能源重点实验室,广州 510640;
4 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
Study on Gas Extraction of Rice Husk Pyrolysis via Solid Waste Char-base Catalyst
ZHAO Dandan1,2,3,4, WANG Shuxiao1,2,3,4, GU Jing1,2,3,4, SHAN Rui1,2,3,4, YUAN Haoran1,2,3,4
1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
2 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China;
3 CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
4 Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 5349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热解过程中焦油的去除和转化是实现固体废弃物资源化、能源化利用的关键技术,其中催化裂解是一种有效的焦油去除方式,它可以将焦油转化为高价值的气体产品。本工作以固体废弃物稻壳为研究对象和原料,运用湿式浸渍法制备稻壳炭基金属催化剂材料,并将其用于稻壳的热解-裂解实验中以提高所产生气体的品质。运用扫描电子显微镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、N2吸脱附(BET)方法对材料进行检测,分析所制备的单金属及双金属材料的物理化学性质;在稻壳热解-裂解反应中,分析反应温度对焦油转化和气体产量的影响;对反应中所产生的气体组分及含量进行检测,探究原料与催化剂材料的质量比对所产生气体的影响;同时对催化剂的重复使用情况进行了实验与分析。研究结果表明,稻壳炭基金属材料的添加对热解中所产生的气体成分具有明显的改善作用,产生气体中氢气和一氧化碳的含量均有所增加,二氧化碳的含量相对减少,气体中合成气的摩尔分数可达到80%;适当增加催化剂的添加量可提高热解气体的产量,原料与催化剂的质量比在1∶1左右时,气体产量基本达到平衡状态。本工作所制备的稻壳炭基金属材料在去除焦油和提高气体产物质量方面展现了良好的性能,所采用的一步式热解-裂解反应有效地改善了热解所产生气体的质量,可为热解方法制备高品质气体的研究提供基础数据与新材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵丹丹
王舒笑
顾菁
单锐
袁浩然
关键词:  热解  焦油  合成气  固体废弃物  催化剂  催化裂解    
Abstract: In the pyrolysis process, the removal and transformation of tar is the key technology to realize the solid waste resources and energy utilization. ICatalytic cracking is an effective way to remove tar, which can transform tar into high-value gas products. In this paper, solid waste rice husk is taken as the research object and raw material, the rice hull char-based catalyst materials were prepared by wet impregnation method, and used the materials in the pyrolytic-cracking experiment of rice husk to improve the quality of produced gas. The physical and chemical properties of the materials were detected by scanning electron microscopy ( SEM),X-ray energy spectrum ( EDS), X-ray diffraction ( XRD ) and Brunauer-Emmett-Teller ( BET) to analyze the properties of single metal and bimetal materials. In the pyrolytic-cracking reaction of rice husk, the influence of reaction temperature on tar conversion and gas yield was analyzed, the generated gas composition and content were detected, and the influence of the mass ratio of raw material and catalyst material on the generated gas was explored. Meanwhile, the reuse of catalyst materials was tested and analyzed. The results showed that, the addition of rice husk char-based material had a significant improvement on the composition of generated gas during pyrolysis. In the generated gas, the content of hydrogen and carbon monoxide increased, while the content of carbon dioxide decreased, and the molar ratio of syngas in the gas could reach 80%. An appropriate increase in the amount of catalysts can improve the gas yield in the pyrolytic-cracking reaction. When the mass ratio of raw materials and catalysts is approximately 1 :1, the gas yield basically reaches an equlibrium state. In this paper, the prepared rice husk char-based materials showed good performance in removing tar and improving the quality of gas products , the one-step pyrolytic-cracking reaction effectively improved the quality of generated gas by pyrolysis,which provided basic data and new materials for the study on the preparation of high-quality gas by pyrolysis.
Key words:  pyrolysis    tar    syngas    solid waste    catalyst    catalytic cracking
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TK09  
基金资助: 国家重点研发项目(2018YFC1901200); 国家自然科学基金(51906248); 南方海洋科学与工程广东省实验室(广州)重大专项团队项目(GML2019ZD0101); 广东省能源高效清洁利用重点实验室开放基金(2019ECEU02); 中国科学院可再生能源重点实验室基金(E029040101)
通讯作者:  *yuanhr@ms.giec.ac.cn   
作者简介:  袁浩然,中国科学院广州能源研究所研究员,研究室副主任,博士研究生导师,国家“万人计划”青年拔尖人才,广东省杰出青年基金获得者,首届科学探索奖获得者。2011年在中国科学院广州能源研究所热能工程专业取得博士学位,先后荣获珠江科技新星、中国科学院优秀青年科学家、广东青年五四奖章等荣誉。从事有机废物能源化与资源化高效清洁利用基础理论及技术攻关研究。主持国家重点研发计划“城镇及工业有机固废高效热解技术及大型化装备”等国家、省部级项目20余项,获国家科技进步二等奖,获省部级一等奖6项,发表论文120余篇,授权专利40余件。
赵丹丹,中国科学院广州能源研究所副研究员,同济大学博士生。2010年6月毕业于华南理工大学,获工程热物理专业工学硕士学位。主要从事有机固废清洁利用研究,在该领域发表论文10余篇,授权专利10件,撰写咨询报告若干。先后参与多个国家级、省部级科研项目,包括973计划、国家科技支撑、国家自然科学基金、广东省科技计划、中国工程院咨询课题等。
引用本文:    
赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
ZHAO Dandan, WANG Shuxiao, GU Jing, SHAN Rui, YUAN Haoran. Study on Gas Extraction of Rice Husk Pyrolysis via Solid Waste Char-base Catalyst. Materials Reports, 2021, 35(11): 11001-11006.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060211  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11001
1 Cheng L, Wu Z, Zhang Z, et al. Applied Energy,2020,258,114088.
2 Wang S, Shan R, Gu J, et al. Fuel,2020,271,117517.
3 Fuentes-Cano D, von Berg L, Diéguez-Alonso A, et al. Fuel Processing Technology,2020,199,106271.
4 Zeng J, Hu J, Qiu Y, et al. Applied Energy,2019,253,113502.
5 Meng J, Wang X, Zhao Z, et al. Bioresource Technology,2018,268,212.
6 Santamaria L, Lopez G, Arregi A, et al. Applied Catalysis B: Environmental,2019,242,109.
7 Wang D, Jin L, Li Y, et al. Energy Conversion and Management,2019,197,111871.
8 Liu L, Zhang Z, Das S, et al. Applied Catalysis B: Environmental,2019,250,250.
9 Dong Q, Li H, Niu M, et al. Bioresource Technology,2018,266,284.
10 Loy A C M, Yusup S, Lam M K, et al. Energy Conversion and Management,2018,165,541.
11 Veses A, Sanahuja-Parejo O, Callen MS, et al. Waste Management,2020,101,171.
12 Lin B, Huang Q, Yang Y, et al.Journal of Analytical and Applied Pyro-lysis,2019,139,308.
13 Zhang Z, Liu L, Shen B, et al. Renewable and Sustainable Energy Reviews,2018,94,1086.
14 Ravenni G, Sárossy Z, Ahrenfeldt J, et al. Renewable and Sustainable Energy Reviews,2018,94,1044.
15 Buentello-Montoya D A, Zhang X, Li J. Renewable and Sustainable Energy Reviews,2019,107,399.
16 Guo F, Peng K, Liang S, et al. Energy,2019,180,584.
17 Feng D, Zhao Y, Zhang Y, et al. Biomass and Bioenergy,2017,107,261.
18 Shen Y, Zhao P, Shao Q, et al. Applied Catalysis B: Environmental,2014,152,140.
19 Guo F, Li X, Liu Y, et al. Energy Conversion and Management,2018,167,81.
20 Saravana Sathiya Prabhahar R, Nagaraj P, Jeyasubramanian K. Microchemical Journal,2019,146,922.
21 Wang S, Shan R, Lu T, et al. Applied Energy,2020,263,114565.
22 Wang S, Shan R, Wang Y, et al. Renewable Energy,2019,130,41.
23 Xie Y, Su Y, Wang P, et al. Fuel Processing Technology,2018,182,77.
24 Meng J, Zhao Z, Wang X, et al. Energy Conversion and Management,2018,168,60.
25 Tang F, Yu Z, Li Y, et al. Bioresource Technology,2020,299,122636.
[1] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[2] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[3] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[4] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[5] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[6] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[7] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[8] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[9] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[10] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[11] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[12] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[13] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[14] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[15] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[4] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[5] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[6] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[7] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[8] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[9] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[10] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed