Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3026-3032    https://doi.org/10.11896/cldb.19120139
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用 |
工业固体废弃物制备二氧化硅功能材料的研究进展
苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊
昆明理工大学冶金与能源工程学院,昆明 650093
Research Progress on Functional Materials Preparation of Silica from Industrial Solid Wastes
SU Bowen, SHI Gongchu, LIAO Yalong, ZHANG Yu, WANG Wei, XI Jiajun
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 7653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,我国每年产出约33亿t固体废弃物。工业生产过程中产生的固体废弃物常常露天堆存于自然环境中,对土壤、水及大气环境产生污染,也给人类的生存带来巨大的潜在危险。综合利用的效率较低且增值空间不大是固体废弃物大量堆积的主要原因之一。因此,寻求高效的综合利用固体废弃物的处理方法迫在眉睫。
电炉黄磷渣、钢铁及有色金属冶炼过程产生的炉渣、建材及电力行业产生的粉煤灰等是常见的大宗固体废弃物,这些废弃物中皆富含二氧化硅,且二氧化硅主要以硅酸盐、晶态二氧化硅和非晶态二氧化硅等形式存在。此外,根据固体废弃物产生的渠道和生产方式不同,也会含有其他不同的矿物相组分,有时也会存在稀土元素、氧化铝及其他高价值的有色金属元素。将固体废物中的稀土金属及氧化铝等高值有价元素分离提取后,可以制备白炭黑、二氧化硅气凝胶,也可以同时利用固体废弃物中的二氧化硅和氧化铝制备沸石。
白炭黑是具有高孔隙率、高分散性及良好热稳定性的无定形纳米二氧化硅材料,是制备催化剂、橡胶增强剂、触变剂、热绝缘体等材料的重要原料,被广泛用于橡胶、化工、电子、医药等领域。二氧化硅气凝胶拥有比表面积大、体积密度低和导热系数低等优点,可用于制备催化剂的载体、保温隔热材料、电子薄膜材料及射电发光器件等。由氧化铝源、硅源形成铝硅酸盐凝胶后再经水热处理合成沸石,其由于发达的孔结构可以容纳多种阳离子,具有吸附、离子交换和催化等一种或多种性质,被广泛用作工业吸附剂、催化剂、膜材料和膜加工的添加剂、离子交换材料及化学传感器等。将富含二氧化硅的固体废弃物中的高价值有价元素提取后,制备白炭黑、二氧化硅气凝胶或者沸石,是提高固体废弃物利用率和增值率的一种有效途径。
本文对比分析了几种典型富含二氧化硅的固体废弃物的组成和二氧化硅在其中的矿相特征,综述了该典型固体废弃物中二氧化硅的分离及制备白炭黑、气凝胶和沸石等功能材料的研究进展,以期为固废制备二氧化硅功能材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏博文
史公初
廖亚龙
张宇
王伟
郗家俊
关键词:  固体废弃物  二氧化硅  白炭黑  气凝胶  沸石  综合利用    
Abstract: In recent years, about 3.3 billion tons of solid waste are produced in China every year. The solid waste produced in the process of industrial production is often open stored in the natural environment, which pollutes the soil, water and air environment, and also brings great potential danger to the survival of human beings. The low efficiency of comprehensive utilization and small space of increment is one of the main reasons for the massive accumulation of the solid waste. Therefore, it is urgent to seek efficient and comprehensive disposal methods of the solid waste.
Phosphorus slag of electric furnace, slag produced in iron and steel smelting and nonferrous metal smelting process, fly ash produced in the domains of building materials and electric power are common bulk solid wastes. These wastes are rich in silica, which mainly exists in the form of silicate, crystalline silica and amorphous silica. In addition, depending on the origins and production methods of solid waste, there are also diffe-rent mineral phase components, and sometimes there are rare earth elements, alumina and other high-value non-ferrous metals.White carbon black and silica aerogels can be prepared after separating rare earth metals and valuable elements such as alumina from the solid wastes, and zeolite can also be prepared by using silica and alumina from the solid wastes.
White carbon black is an amorphous nano-silica material with high porosity, high dispersion and good thermal stability. It is an important raw material for preparing catalysts, rubber reinforcing agents, thixotropic agents, thermal insulators and other materials.It is widely used in rubber, chemical industry, electronics, medicine and other fields. Silica aerogel has the advantages of large specific surface area, low volume density and low thermal conductivity, which can be used as a carrier for preparing catalysts, heat preservation and insulation materials, electronic film mate-rials and radio luminescent devices. Zeolite can be synthesized by aluminum silicate gel preparing from alumina and silicon in the solid wastes firstly, followed by water heated treatment. Resulted from developed pore structure it can accommodate a variety of cationic, zeolite has one or more properties of adsorption, ion exchange and catalysis, and therefore is widely used for industrial adsorbent, catalyst, membrane materials and the processing additives, ion exchange materials and chemical sensors, etc. The preparation of white carbon black, silica aerogel or zeolite after extracting valuable elements from solid waste rich in silicon dioxide is an effective way to improve the utilization rate and value-added rate of the solid wastes.
In this paper, the composition of several typical solid wastes rich in silicon dioxide and the mineral-phase characteristics of silica in them are compared and analyzed, and the research progress of silica separation and preparation of functional materials such as white carbon black, silica aerogel and zeolite are reviewed. So as to provide reference for the preparation of silica functional materials with solid wastes.
Key words:  solid waste    silicon dioxide    white carbon black    aerogel    zeolite    comprehensive utilization
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TF09  
基金资助: 国家自然科学基金(21978122; 21566017); 昆明理工大学分析测试基金项目(2019M20182202021)
作者简介:  廖亚龙,昆明理工大学教授,博士研究生导师。1988年7月本科毕业于四川大学化工学院,2007年8月在昆明理工大学冶金工程专业取得博士学位。主要从事资源综合利用、冶金物理化学方向的研究工作。
引用本文:    
苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
SU Bowen, SHI Gongchu, LIAO Yalong, ZHANG Yu, WANG Wei, XI Jiajun. Research Progress on Functional Materials Preparation of Silica from Industrial Solid Wastes. Materials Reports, 2021, 35(3): 3026-3032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120139  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3026
1 Ilutiu-Varvara D A.Polish Journal of Environmental Studies,2016,25(1),147.2 Malik A, Grohmann E.Environmental protection strategies for sustainable development, Springer Netherlands, Netherlands,2012.3 National Bureau of Statistics of China. China statistical yearbook, China Statistics Press, China,2018(in Chinese).国家统计局.中国统计年鉴,中国统计出版社,2018.4 Reuter M, Xiao Y, Boin U.In: VII International conference on molten slags fluxes and salts, The South African Institute of Mining and Metallurgy. Johannesburg, South Africa,2004,pp.349.5 Cabanova K, Vlcek J, Seidlerova J, et al.Materials Today: Proceedings,2018,5,S2.6 Ye Y P, Zeng X Q, Qian W L, et al.Fuel,2008,87(10),1880.7 Urosevic D M, Dimitrijevic M D, Jankovic Z D, et al.Physicochemical Problems of Mineral Processing,2015,51(1),73.8 Chen Q J, Ding W J, Sun H J, et al.Energy,2019,188,116102.9 Kuwahara Y, Ohmichi T, Mori K, et al.Journal of Materials Science,2008,43(7),2407.10 Li C, Wan J H, Sun H H, et al.Journal of Hazardous Materials,2010,179(1-3),515.11 Quan X G, Wang H J.Chinese Journal of Chemical Engineering,2014,22(9),1055.12 Wang Z J, Zhang T, Zhou L.Cement and Concrete Composites,2016,74,174.13 Xu K J, Sun Q W, Guo Y Q, et al.Research on Chemical Intermediates,2014,40(5),1965.14 Manchanda C K, Khaiwal R, Mor S.Journal of Sol-Gel Science and Technology,2017,83(3),574.15 Gao H Y, Song Z Z, Yang L, et al.Energy & Fuels,2016,30(11),9645.16 Bochevskaya E G, Karshigina Z B, Abisheva Z S, et al.KnE Materials Science,2017,2017,116.17 Abisheva Z S, Karshigina Z B, Bochevskaya Y G, et al.Hydrometallurgy,2017,173,271.18 Su Y, Li G B, Xia J P, et al.Environmental Engineering,2008,26(5),98(in Chinese).苏毅,李国斌,夏举佩,等.环境工程,2008,26(5),98.19 Lin H Y, Wan L, Yang Y F.Advanced Materials Research,2012,512-515,1548.20 Sun P M, Li G M, Tong J W, et al.Journal of China Coal Society,2007,32(7),744(in Chinese).孙培梅,李广民,童军武,等.煤炭学报,2007,32(7),744.21 Tang Y, Chen F L.Mining and Metallurgical Engineering,2008,28(6),73(in Chinese).唐云,陈福林.矿冶工程,2008,28(6),73.22 Wang X H, Wang B D, Xiao Y F, et al.Advanced Materials Research,2014,878,264.23 Wang Y W.Global Geology,2014,17(3),182.24 Zhang Z J, Sun Y M, Yao Q, et al.Acta Mineralogica Sinica,2007,27(2),137(in Chinese).张战军,孙俊民,姚强,等.矿物学报,2007,27(2),137.25 Shoppert A, Loginova I V, Chaikin L I, et al.KnE Materials Science,2017,2017,89.26 Wang L.Preparation of silica aerogel from high-alumina fly ash: an expe-rimental study. Master's Thesis, China University of Geosicences (Beijing), China,2006(in Chinese).王蕾. 利用高铝粉煤灰制备氧化硅气凝胶的实验研究.硕士学位论文,中国地质大学(北京),2006.27 Dorcheh A S, Abbasi M H.Journal of Materials Processing Technology,2008,199(1-3),10.28 Tadjarodi A, Haghverdi M, Mohammadi V.Materials Research Bulletin,2012,47(9),2584.29 Shi F, Liu J X, Song K, et al.Journal of Non-Crystalline Solids,2010,356(43),2241.30 Shi F, Wang L J, Liu J X.Materials Letters,2006,60(29-30),3718.31 Wu X D, Fan M H, Mclaughlin J F, et al.Powder Technology,2018,323,310.32 Ye Z Q, Huang Z L, Wang F K, et al.Mining and Metallurgical Engineering,2018,38(3),86(in Chinese).叶子青,黄自力,王福坤,等.矿冶工程,2018,38(3),86.33 Hu W B, Li M M, Chen W, et al.Colloids and Surfaces A: Physicoche-mical and Engineering Aspects,2016,501,83.34 Maleki H, Duraes L, Garcia-Gonzalez C A, et al.Advances in Colloid and Interface Science,2016,236,1.35 Liu G W, Zhou B, Ni X Y, et al.Journal of the Chinese Ceramic Society,2012,40(1),160(in Chinese).刘光武,周斌,倪星元,等.硅酸盐通报,2012,40(1),160.36 Strom R A, Masmoudi Y, Rigacci A, et al.Journal of Sol-Gel Science and Technology,2007,41(3),291.37 Yun D S, Kim H J, Yoo J W.Bulletin of the Korean Chemical Society,2005,26(12),1927.38 Blaszczynski T, Slosarczyk A, Morawski M.Procedia Engineering,2013,57(1),200.39 Li T, Wang T.Materials Chemistry and Physics,2008,112(2),398.40 Charkhi A, Kazemeini M, Ahmadi S J, et al.Powder Technology,2012,231,1.41 Sue-Aok N, Srithanratana T, Rangsriwatananon K, et al.Applied Surface Science,2010,256(12),3997.42 Bogdanchikova N, Simakov A, Smolentseva E, et al.Applied Surface Science,2008,254(13),4075.43 Fathizadeh M, Aroujalian A, Raisi A.Journal of Membrane Science,2011,375(1-2),88.44 Mintova S, Bein T.Microporous and Mesoporous Materials,2001,50(2-3),159.45 Deng H, Ge Y.RSC Advances,2015,5(12),9180.46 Soe J T, Kim S S, Lee Y R, et al.Bulletin of the Korean Chemical Society,2016,37(4),490.47 Belviso C, Agostinelli E, Belviso S, et al.Microporous and Mesoporous Materials,2015,202,208.48 Kazemian H, Naghdali Z, Kashani T G, et al.Advanced Powder Techno-logy,2010,21(3),279.49 Chen D, Hu X, Shi L, et al.Applied Clay Science,2012,59-60,148.50 Anuwattana R, Khummongkol P.Journal of Hazardous Materials,2009,166(1),227.51 Bukhari S S, Behin J, Kazemian H, et al.Fuel,2015,140,250.52 Gordon J, Kazemian H, Rohani S.Microporous and Mesoporous Materials,2012,162,36.53 Sabouni R, Kazemian H, Rohani S.Chemical Engineering Journal,2010,165(3),966.54 Belviso C, Cavalcante F, Lettino A, et al.Ultrasonics Sonochemistry,2011,18(2),661.55 Anuwattana R, Balkus K J, Asavapisit S, et al.Microporous and Mesoporous Materials,2008,111(1-3),260.56 Wang S N, Wang Y R, Du H, et al.The Chinese Journal of Nonferrous Metals,2017,27(8),1729(in Chinese).王少娜,王亚茹,杜浩,等.中国有色金属学报,2017,27(8),1729.57 Ding J, Ma S H, Zheng S L, et al.Hydrometallurgy,2016,161,58.
[1] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[2] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[3] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[4] 苏力军, 赵佳明, 王瑞杰, 郭慧, 宋寒, 李文静, 杨洁颖. 夹层结构气凝胶外防热材料的制备及应用技术研究[J]. 材料导报, 2020, 34(Z2): 157-159.
[5] 赵立杰, 张芳. 钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020, 34(Z2): 319-322.
[6] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[7] 郭慧, 刘圆圆, 宋寒, 黄红岩, 刘韬, 徐春晓, 张恩爽, 李文静. 纤维对酚醛气凝胶材料性能的影响[J]. 材料导报, 2020, 34(Z2): 513-515.
[8] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[9] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[10] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[11] 荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(Z1): 173-177.
[12] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[13] 曲涛, 谷旭鹏, 施磊, 罗铭洋, 王强, 吕飞, 田源, 戴永年. 高镁硅红土镍矿开发利用研究现状[J]. 材料导报, 2020, 34(Z1): 261-267.
[14] 刘文博, 姚华彦, 王静峰, 陈传明, 刘玉亭. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(Z1): 268-270.
[15] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed