Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3033-3040    https://doi.org/10.11896/cldb.20040059
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用 |
氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法
卢喆1, 王社良1, 王善伟1, 姚文娟1, 刘博1, 闫强强2
1 西安建筑科技大学土木工程学院,西安 710055;
2 西京学院土木工程学院,西安 710123
Method for Enhancing Durability of Sticky Rice Mortar Under the Coupling Effect of Chloride Salt Erosion and Freeze-Thaw Cycle
LU Zhe1, WANG Sheliang1, WANG Shanwei1, YAO Wenjuan1, LIU Bo1, YAN Qiangqiang2
1 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 College of Civil Engineering, Xijing University, Xi'an 710123, China;
下载:  全 文 ( PDF ) ( 10554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善传统糯米灰浆应用在砖石古建筑修复与加固中的酥碱冻害,掺加质量分数为12.5%、25% 和50% 的偏高岭土与1%的麻纤维,获得了一种改性糯米灰浆复合材料。以力学强度、质量损失及相对动弹性模量为依据,详细研究了改性灰浆的应用性能。利用红外光衍射、X-ray 粉末衍射和扫描电镜等微观分析方法,系统探究了改性灰浆在标准养护、冻融老化及氯盐侵蚀-冻融循环耦合作用下的性能演变机理。结果表明,混掺纤维和偏高岭土能显著改善灰浆的强度、抗冻性与耐盐性。偏高岭土生成的水化凝胶C-S-H与C-A-H可固化氯离子生成弗里德尔盐以抵抗孔隙破坏,增强了灰浆在氯盐环境下的抗冻性。氯盐侵蚀-冻融循环耦合作用下耐久性指标随麻纤维的掺加而小幅增大,随偏高岭土掺加而先提升后降低。其中以在糯米灰浆中混掺1%麻纤维与25%偏高岭土的增强方法最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢喆
王社良
王善伟
姚文娟
刘博
闫强强
关键词:  改性糯米灰浆  氯盐侵蚀  冻融循环  水化硅酸钙(C-S-H)  微观结构    
Abstract: For improving the frost damage caused by salt efflorescence of traditional sticky rice mortar applied in the restoration and reinforcement of ancient masonries, a kind of modified sticky rice mortar composite material was obtained by adding 12.5%, 25% and 50% metakaolin and 1% flax fiber. Based on the mechanical strength, mass loss and relative dynamic elastic modulus of elasticity, the application performance of modified mortar was studied in detail. By means of infrared diffraction, X-ray powder diffraction and scanning electron microscopy, the perfor-mance evolution mechanism of modified mortar under normal curing, freeze-thaw aging and chloride corrosion freeze-thaw cycle coupling was studied. The results show that the strength, frost resistance and salt resistance of mortar can be significantly improved by mixing flax fiber and metakaolin. The hydrated gel C-S-H and C-A-H produced by metakaolin can solidify chloride ions to form Friedel salt to resist pore destruction and enhance the frost resistance of mortar in chloride environment. The durability index increases slightly with the addition of flax fiber, and increases first and then decreases with the addition of metakaolin. Among them, the reinforcement method of mixing sticky rice ash with 1% flax fiber and 25% metakaolin is the best.
Key words:  modified sticky rice mortar    chloride salt erosion    freeze-thaw cycle    calcium silicate hydrate(C-S-H)    microstructure
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TU502  
基金资助: 国家自然科学基金重大研究计划面上项目(51678480); 陕西省教育厅重点实验室科学研究计划项目(17JS071); 陕西省科技统筹创新工程重点实验室项目(2014SZS04-P04)
作者简介:  卢喆,2017年6月毕业于西安科技大学,获得工学学士学位。于2018年9月至今在西安建筑科技大学攻读硕士学位,主要从事抗震加固与古建筑材料方面的研究。
王社良,西安建筑科技大学教授,博士研究生导师。主要从事古建筑结构修复及抗震加固方面研究。现任中国建筑学会抗震防灾分会理事,中国基建优化研究会结构工程专业委员会副主任委员,陕西省“三秦人才”,国家自然科学基金、博士后基金和陕西省自然科学基金函评专家。主持完成国家自然科学基金重大研究计划项目1项、973前期研究专项1项、973子课题1项、国家自然科学基金重点项目1项;主持完成国家自然科学基金面上项目5项。在国内外学术刊物上发表学术论文300余篇,其中180余篇被SCI或EI等收录。
引用本文:    
卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
LU Zhe, WANG Sheliang, WANG Shanwei, YAO Wenjuan, LIU Bo, YAN Qiangqiang. Method for Enhancing Durability of Sticky Rice Mortar Under the Coupling Effect of Chloride Salt Erosion and Freeze-Thaw Cycle. Materials Reports, 2021, 35(3): 3033-3040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040059  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3033
1 Wang Shanwei, Wang Sheliang, Lu Zhe, et al.Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118887.2 Chen S.Research on mechanism and prevention of frost damage of heri-tage buildings in cold region. Master's Thesis, Harbin Institute of Technology, China,2018(in Chinese).陈思. 寒地文物建筑冻害的机理与防治研究.硕士学位论文,哈尔滨工业大学,2018.3 Zhang Y, Jin P J, Wang S, et al.Relics and Museolgy,2019(4),106(in Chinese).张悦,金普军,王肃,等.文博,2019(4),106.4 Feilden B, Jokilehto J.Management Guidelines of World Cultural Heritage Sites ICCROM, Rome,1993.5 Rosário Veiga.Construction and Building Materials,2017,157,132.6 Moropoulou A, Bakolas A, Bisbikou K.Journal of Cultural Heritage,2000,1(1),45.7 Li Z H, Yan X J, Wang F, et al.China Science and Technology Information,2020(2),58(in Chinese).李昭辉,严新军,王飞,等.中国科技信息,2020(2),58.8 Hu Y, Wei G F, Fang S Q, et al.Journal of Civil and Environmental Engineering,2019,41(3),134(in Chinese).胡悦,魏国锋,方世强,等.土木与环境工程学报,2019,41(3),134.9 Guo L M, Yang L M, Zhang J M, et al.Chongqing Architecture,2018,17(11),48(in Chinese).郭丽明,阳令明,张俭民,等.重庆建筑,2018,17(11),48.10 Li Z G, Fang S Q, Wei G F, et al.Journal of Building Materials,2013,16(3),462(in Chinese).李祖光,方世强,魏国锋,等.建筑材料学报,2013,16(3),462.11 Cristiana Nunes, Zuzana Slížková.Construction and Building Materials,2016,114,896.12 Liu H Z, Zhao T J,Concrete,2015(10),9(in Chinese).刘洪珠,赵铁军.混凝土,2015(10),9.13 Eva Vejmelková, Martin Keppert, Zbyněk Keršner, et al.Construction and Building Materials,2012,31,22.14 Wei G F, Sun S, Wang C X, et al.Spectroscopy and Spectral Analysis,2013,33(7),1973(in Chinese).魏国锋,孙升,王成兴,等.光谱学与光谱分析,2013,33(7),1973.15 Shi L, Ma S H, Li W F, et al.Concrete,2013(11),101(in Chinese).石磊,马素花,李伟峰,等.混凝土,2013(11),101.16 He J, Yang C H.Bulletin of the Chinese Ceramic Society,2009,28(6),1225(in Chinese).何娟,杨长辉.硅酸盐通报,2009,28(6),1225.17 Jian Qi, Xiuxiang Gao, Huhe Chen, et al.Spectroscopy and Spectral Analysis,2008(3),538(in Chinese).齐剑,高秀香,陈呼和,等.光谱学与光谱分析,2008(3),538.18 Ravi R, Rajesh M, Thirumalini S.Journal of Building Engineering,2018,15.19 Chen J X, Zhang K, Sun K L, et al.Journal of Synthetic Crystals,2018,47(10),2216(in Chinese).陈菊香,张克,孙开莲,等.人工晶体学报,2018,47(10),2216.20 He Z, Hu J, Wang F R, et al.Journal of Wuhan University(Enginee-ring),2017,50(5),663(in Chinese).何真,胡骏,王逢睿,等.武汉大学学报(工学版),2017,50(5),663.21 Wei Guofeng, Zhang Hui, Wang Hongmin, et al.Construction and Buil-ding Materials,2011,28(1),624.22 Bella G Di, Fiore V, Galtieri G, et al.Construction and Building Mate-rials,2014,58,159.23 Yu Yan.The influence of chloride binding in cement paste with meta-kaolin as admixture, Master's Thesis, Chongqing University, China,2010(in Chinese).晏宇. 偏高岭土对水泥石固结氯离子性能的影响,硕士学位论文,重庆大学,2010.24 Bao L S, Song X C, Yu L, et al.Journal of Shenyang Jianzhu University(Natural Science),2010,26(1),36(in Chinese).包龙生,宋晓纯,于玲,等.沈阳建筑大学学报(自然科学版),2010,26(1),36.25 Guo L P, Zhang J, Cao Y Z, et al.Materials Reports A: Review Papers,2017,31(12),132(in Chinese).郭丽萍,张健,曹园章,等.材料导报:综述篇,2017,31(12),132.26 Zhao Zhenxuan, Zhang Lei, Dai Hongxing, et al.Microporous and Mesoporous Materials,2011,138(1),191.27 Morse J W, Bender M L.Chemical Geology,1990,82(90),265.28 Jiang X X.Journal of Xi'an Shiyou University(Natural Science Edition),2015,30(6),89(in Chinese).姜欣欣. 西安石油大学学报(自然科学版),2015,30(6),89.29 Wang Hui, Gao Xiaojian, Liu Junzhe.Cold Regions Science and Techno-logy,2018,154,95.
[1] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[2] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[3] 王锐, 黄榜彪, 莫济成, 李青, 朱基珍. 冻融循环对烧结页岩多孔砖砌体抗剪性能的影响[J]. 材料导报, 2020, 34(Z1): 258-260.
[4] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[5] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[6] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[7] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[8] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[9] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[10] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[11] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[12] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[13] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[14] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed