Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3010-3015    https://doi.org/10.11896/cldb.20050102
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用 |
粉煤灰高值化利用研究现状与进展
孙红娟1, 曾丽1,2, 彭同江1
1 西南科技大学固体废物处理与资源化教育部重点实验室,绵阳 621010;
2 成都大学建筑与土木工程学院,成都 610106
Research Status and Progress of High-value Utilization of Coal Fly Ash
SUN Hongjuan1, ZENG Li1,2, PENG Tongjiang1
1 Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China;
2 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
下载:  全 文 ( PDF ) ( 3435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球能源需求的快速增长为各种自然资源替代品的开发铺平了道路。然而,煤炭作为世界主要能源依然占据重要地位。2015年煤炭占全球能源供应的29%,预计到2035年,煤炭所占的能源比例仍将高达24%。粉煤灰作为燃煤发电厂的工业副产品,其产生量仍将在很长一段时间内高居不下。粉煤灰由于成分复杂及不合理的处理已经成为环境保护的关注重点。同时粉煤灰又是一种潜在的资源,亟待合理的资源化利用。目前,粉煤灰资源化利用涉及领域广,但高值化利用率偏低,高值化利用的前提是弄清粉煤灰的属性。粉煤灰是由实心或中空非晶质球形颗粒、不规则未燃尽碳颗粒和莫来石、石英、赤铁矿等矿物颗粒组成,不同产地粉煤灰的物理性质、化学成分和矿物成分有一定差异,其利用途径和目的也不尽相同。粉煤灰复杂的成分是高值化利用的一大障碍。然而,采用合理的分离技术可将有用组分(空心微珠、未燃尽的碳、磁性物质等)分离出来并进行高值化利用。粉煤灰的化学成分和矿物组成是地质聚合物、微晶玻璃和沸石等高附加值产品的低价原料。粉煤灰的化学成分以及原始粒度对地质聚合物的强度有较大影响,在粉煤灰制备地质聚合物时要在充分考虑其基本属性的基础上确定最佳工艺技术条件。依据粉煤灰的化学成分,以粉煤灰为原料制备的微晶玻璃主要有CaO-Al2O3-SiO2和MgO-Al2O3-SiO2两种体系,但其制备方法的能耗都较高,能耗较低的直接烧结法还需进一步研究推广。粉煤灰合成沸石的应用实验较多,却很少开展工业性试验。制备介孔二氧化硅和二氧化硅气溶胶实验的理论研究还不够深入,条件较难控制,距离工业化生产还有很长一段路。本文在粉煤灰的物理化学属性基础上综述了包括有用元素分离、地质聚合物合成、微晶玻璃和纳米多孔材料制备在内的粉煤灰高值化利用现状,分析了高值化利用中主要存在的问题及发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙红娟
曾丽
彭同江
关键词:  粉煤灰  属性  地质聚合物  微晶玻璃  沸石    
Abstract: The rapid growth of global energy demand has paved the way for the development of natural resources alternatives. However, coal still plays an important role in the world's main energy source. Coal accounted for 29% of global energy supply in 2015, and it is estimated that by 2035, coal will still account for 24% of the energy. As an industrial by-product of coal-fired power plants, the amount of coal fly ash will remain high for a long time. Coal fly ash has become the focus of environmental concern due to its complex composition and unreasonable treatment. At the same time, coal fly ash is a potential resource, which urgently needs to be utilized reasonably. At present, the resource utilization of coal fly ash involves a wide range of fields, but the high-value utilization rate is low. The premise of high-value utilization is to study the properties of coal fly ash. Coal fly ash is composed of solid or hollow amorphous spherical particles, irregular unburned carbon particles and mineral particles such as mullite, quartz, hematite, etc. There are some differences in the physical properties, chemical composition and mineral composition of coal fly ash in different producing areas. Its utilization way and purpose also are not identical. The complex composition of coal fly ash is a major obstacle to high-value utilization. However, the useful components, such as hollow microspheres, unburned carbon, magnetic materials, etccan be separated from complex components by reasonable separation techniques. The chemical composition and mineral composition of fly ash are low-priced raw materials for high value-added products such as geopolymers, glass-ceramics and zeolites.The chemical composition and original particle size of coal fly ash have a great influence on the strength of geopolymers. The optimal technical conditions should be determined on the basis of fully considering the basic properties of coal fly ash when preparing geopolymers. According to the chemical composition of coal fly ash, the glass-ceramics prepared from coal fly ash mainly consist of two systems: CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2, but the energy consumption of the preparation method is relatively high. The direct sintering method with low energy consumption still needs to be further studied and popularized. There are many application experiments of zeolite synthesized from coal fly ash, but few industrial experiments are carried out. The theoretical research on the preparation of mesoporous silica and silica aerosol experiments is not thorough enough, the conditions are difficult to control, and there is still a long way before industrial production. Based on the physical and chemical properties of coal fly ash, the present situation of high-value utilization of coal fly ash, including separation of useful components, synthesis of geopolymers, preparation of glass-ceramics and preparation of nano-porous materials, is reviewed in this paper. The main problems and development trends of high-value utilization are also analyzed.
Key words:  coal fly ash    property    geopolymer    glass-ceramics    zeolite
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  X705  
作者简介:  孙红娟,博士,教授,博士研究生导师。中国矿物复合材料专业委员会委员,中国硅酸盐学会非金属矿分会理事,中国矿物岩石地球化学学会矿物材料专业委员会委员、中国地质学会矿物专业委员会委员,四川省纳米协会副理事长。主要从事纳米矿物材料的制备及应用、石墨烯材料的制备与应用、固体废物资源化处理等研究。主持国家自然科学基金项目3项、省部级项目8项、企业合作项目25项等。在国内外知名学术刊物和学术会议上发表学术论文150余篇,其中EI、SCI收录80余篇,出版专著1部。获四川省科技进步三等奖2项,已授权专利15项。
曾丽,2010年6月毕业于青海大学,获得工学学士学位。2013年6月在西南科技大学环境与资源学院取得硕士学位。现为西南科技大学环境与资源学院博士研究生,在孙红娟教授的指导下进行研究。目前主要研究领域为工业固体废弃物资源化利用。
彭同江,博士,教授,博士研究生导师。中国建筑材料工业科技委员会专家,中国硅酸盐学会非金属矿分会理事,四川省学术和技术带头人,享受国务院特殊津贴专家。主要从事石墨烯材料的制备及应用、矿物晶体化学、矿物材料学及纳米材料物理与化学研究。先后完成国家自然科学基金、“863”、国家科技支撑计划和科技型中小企业创新基金项目20余项,省部级项目16项等。先后获省部级一等奖1项、三等奖6项。出版专著3部。申请发明专利20项,已授权12项。在国内外知名学术刊物和学术会议上发表学术论文200余篇,其中EI、SCI收录80余篇。
引用本文:    
孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
SUN Hongjuan, ZENG Li, PENG Tongjiang. Research Status and Progress of High-value Utilization of Coal Fly Ash. Materials Reports, 2021, 35(3): 3010-3015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050102  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3010
1 Bhatt A, Priyadarshini S, Mohanakrishnan A A, et al.Case Studies in Construction Materials,2019,11,e00263.2 Gollakota A R K, Volli V, Shu C M.Science of the Total Environment,2019,672,951.3 Yao Z T, Ji X S, Sarker P K, et al.Earth-Science Reviews,2015,141,105.4 Ma B Y, Wu Y, Liu L Y, Comprehensive utilization of fly ash, Science Press, China,2016(in Chinese).马北越,吴艳,刘丽影.粉煤灰的综合利用,科学出版社,2016.5 Ma B Y, Ren X M, Yin Y, et al.Ceramics International,2017,43(15),11830.6 Ma B Y, Su C, Ren X M, et al.Journal of Alloys and Compounds,2019,803,981.7 Yin Y, Ma B Y, Hu C B, et al.International Journal of Applied Ceramic Technology,2019,16(1),23.8 Kutchko B G, Kim A G.Fuel,2006,85(17-18),2537.9 Rubio B, Izquierdo M T, Mayoral M C, et al.Journal of Environmental Management,2008,88(4),1562.10 Fisher G L, Prentice B A, Silberman D, et al.Environmental Science & Technology,1978,12,447.11 Ward C R, French D, Jankowski J, et al.International Journal of Coal Geology,2009,80,224.12 Wang S.Environmental Science & Technology,2008,42(19),7055.13 Sarode D B, Jadhav R N, Khatik V A, et al.Polish Journal of Environmental Studies,2010,19,1325.14 Jin X L, Peng T J, Sun H J.Non-Metallic Mines,2013,36(2),59(in Chinese).晋新亮,彭同江,孙红娟.非金属矿,2013,36(2),59.15 Yang J J, Sun H J, Peng T J, et al.Journal of the Chinese Ceramic Society,2016,44(10),1538(in Chinese).杨敬杰,孙红娟,彭同江,等.硅酸盐学报,2016,44(10),1538.16 Zeng L, Sun H J, Peng T J, et al.Waste Management,2020,106,184.17 Ahmaruzzaman M.Progress in Energy and Combustion Science,2010,36(3),327.18 Vassilev S V, Vassileva C G.Fuel,2007,86(1011),1490.19 Pedersen K H, Jensen A D, Skjøth-Rasmussen M S, et al.Progress in Energy and Combustion Science,2008,34(2),135.20 Blanco F, Gareis P, Materos P, et al.Cement and Concrete Research,2000,30,1715.21 Rohatgi P K, Matsunaga T, Gupta N.Journal of Materials Science,2009,44,1485.22 Batra V S, Varghese A R, Vashisht P, et al.Asia-Pacific Journal of Chemical Engineering,2011,6,78723 Niewiadomski M, Hupka J, Bokotko R, et al.Fuel,1999,78,161.24 Li G, Deng L, Liu J, et al.International Journal of Coal Preparation & Utilization,2015,35,273.25 Shoumkova A S.Waste Management & Research,2011,29,1078.26 Vassilev S V, Menendez R, Alvarez D, et al.Fuel,2003,82(14),1793.27 Vassilev S V, Menendez R, Borrego A G, et al.Fuel,2004,83(11-12),1563.28 Vassilev S V, Menendez R, Diaz-Somoano M, et al.Fuel,2004,83(4-5),585.29 Vassilev S V, Menendez R.Fuel,2005,84(7-8),973.30 Blissett R, Rowson N.In: 15th Conference on environment and mineral processin. Ostrava, Czech Republic,2011,pp.341.31 Temuujin J, Riessen A V, MacKenzie K J D.Construction and Building Materials,2010,24,1906.32 Joseph B, Mathew G.Science Iranica,2012,19,1188.33 Reddy M S, Dinakar P, Rao B H.Microporous and Mesoporous Materials,2016,234,12.34 Chindaprasirt P, Silva P D, Sagoe-Crentsil K, et al.Journal of Materials Science,2012,47(12),4876.35 Duxson P, Provis J L.Journal of the American Ceramic Society,2008,91(12),3864.36 Zhang M, Wang S Y.Materials Reports B: Research Papers,2019,33(3),980(in Chinese).张默,王诗彧.材料导报:研究篇,2019,33(3),980.37 Assi L, Ghahari S A, Deaver E, et al.Construction and Building Mate-rials,2016,123,806.38 Erol M, Küçübayrak S, Ersoy-Meriçboyu A.Fuel,2007,86,706.39 Leroy C, Ferro M C, Monteiro R C C, et al.Journal of the European Ceramic Society,2001,21,195.40 Yoon Soon-Do, Lee Jong-Un, et al.Journal of Materials Science & Technology,2013,29(2),149.41 Kim J M, Kim H S.Journal of the European Ceramic Society,2004,24(9),2825.42 Cao C, Peng T J, Ding W J.Acta Mieralogica Sinica,2013,33(2),141(in Chinese).曹超,彭同江,丁文金.矿物学报,2013,33(2),141.43 Zeng L, Sun H J, Peng T J, et al.Results in Physics.2019,102774.44 Zeng L, Sun H J, Peng T J, et al.In: Conference Symposium on Advances in Powder and Ceramic Material Science held at the 149th Annual Meeting and Exhibition, TMS 2020. San Diego,2020,pp.17.45 Vida-Simiti I, Jumate N, Moldovan V, et al.Journal of Materials Science & Technology,2012,28,362.46 Chancey R T, Stutzman P, Juenger M C G, et al.Cement and Concrete Research,2010,40,146.47 Goren R,Ozgur C, Gocmez H.Ceramics International,2006,32,53.48 Kniess C T, Lima J C D, Prates P B, et al.Journal of Non-Crystalline Soilds,2007,353,4819.49 Yao Z T, Xia M S, Ye Y.Journal of Materials Engineering and Perfor-mance,2011,21,877.50 Holler H, Wirsching U.Forschr Mineral,1985,63,21.51 Bukhari S S, Behin J, Kazemian H, et al.Fuel,2015,140,250.52 Shigemoto N, Hayshi H.Journal of Materials Science,1993,28,4781.53 Rayalu S S, Udhoji J S, Munshi K N, et al.Journal of Hazardous Mate-rials,2001,88,107.54 Murayama N, Yamamoto H, Shibata J.International Journal of Mineral Processing,2002,64,1.55 Querol X, Alastuey A, Lopez-Soler A, et al.Environmental Science & Technology,1997,31,2527.56 Wang S, Zhu Z H.Journal of Hazardous Materials,2005,126,91.57 Yao Z T, Xia M S, Ye Y, et al.Journal of Hazardous Materials,2009,170, 639.58 Ansari M, Aroujalian A, Raisi A, et al.Advanced Powder Technology,2014,25,722.59 Musyoka N M, Petrik L F, Hums E, et al.Catalysis Today,2012,190,38.60 Wang C F, Li J S, Sun X, et al.Journal of Environmental Sciences,2009,21,127.61 Zhou L, Chen Y L, Zhang X H, et al.Materials Letters,2014,119,140.62 Liu L Y, Singh R, Xiao P, et al.Adsorption,2011,17,795.63 Dhokte A O, Khillare S L, Lande M K, et al.Journal of Industrial & Engineering Chemistry,2011,17(4),742.64 Shi F, Liu J X, Song K, et al.Journal of Non Crystalline Solids,2010,356(43),2241.65 Misran H, Singh R, Begum S, et al.Journal of Materials Processing Technology,2007,186(1-3),8.66 Hui K S, Chao C Y H.Journal of Hazardous Materials,2006,137(2),1135.67 Park J E, Youn H K, Yang S T, et al.Catalysis Today,2012,190(1),15.68 Gurav J L, Jung I K, Park H H, et al.Journal of Nanomaterials,2010,2010,1.69 Cheng Y, Xia M, Luo F, et al.Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,490,200.
[1] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[2] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[3] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[4] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[5] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[6] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[7] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[8] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[9] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[10] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[11] 孙道胜, 王辉, 刘开伟, 王爱国, 李萍, 张高展, 管艳梅. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086.
[12] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[13] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[14] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[15] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed