Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3001-3009    https://doi.org/10.11896/cldb.20070004
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用 |
钕铁硼废料循环利用技术现状与展望
李世健1,2, 崔振杰1, 李文韬1, 王东1,2, 王志1,2
1 中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京 100190;
2 中国科学院赣江创新研究院,赣州 341119
Technical Actuality and Prospect of NdFeB Waste Recycling
LI Shijian1,2, CUI Zhenjie1, LI Wentao1, WANG Dong1,2, WANG Zhi1,2
1 Key Laboratory of Green Process and Engineering, Hydrometallurgy Clean Production Technology National Engineering Laboratory, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China;
2 Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341119, China
下载:  全 文 ( PDF ) ( 6419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钕铁硼磁体是重要的稀土功能材料。随着新能源汽车、风力发电、电子信息等行业的快速发展,对钕铁硼磁性材料的需求量逐年增加。我国是世界上最大的钕铁硼生产国,2018年产量达17万t,占世界总产量近90%。钕铁硼在生产过程中会产生约30%的废料。此外,每年也会产生大量因达到使用年限而报废的磁体。这些废料中含有20%~30%的稀土元素,是宝贵的二次资源,对其进行循环再利用,不仅有利于环境保护,同时也有助于促进稀土产业的可持续发展。
不同来源的废料成分特点差别较大,因而采用的处理方法也有所差别。目前的研究方向主要有两个:(1)从废料中回收稀土元素;(2)利用废料进行磁体再生制造。其中稀土回收方法主要包括湿法和火法两大类。如何实现稀土再生产品质量与环境友好度、经济性的有机统一,是钕铁硼废料循环利用领域的热点与难点。
湿法回收工艺包括盐酸全溶法、盐酸优溶法、硫酸复盐沉淀法等,其共性特点为通过控制pH值,将稀土与其他元素分离;通过多级萃取得到单一稀土化合物,之后采用沉淀剂将稀土转化为盐类,经焙烧后得到单一稀土氧化物。此类方法对原料适应性强,稀土产品纯度高,但流程长、对环境不友好。火法回收工艺包括氧化法、氯化法、液态合金提取法等,其原理是基于稀土元素、其他元素与氧、氯、合金元素结合能力的差异性。此类方法流程短、对环境相对友好,但通常得到的是混合稀土化合物,产品纯度较低,且尚未实现工业化。近年来,国内外发展了诸多回收新方法,如电化学法、离子液体法、水解法等,但均处于起步阶段。其中通过电解法、水解法得到混合稀土化合物,离子液体法具有分离效率好、体系稳定性高等优点,具有一定发展前景。短流程再生制造主要包括氢爆法、掺杂法、热压法等,此类方法流程短、对环境友好,但再生磁体磁能积往往会有一定程度降低,从而限制其进一步应用。如何保证再生磁体的磁性能是未来再生制造发展的重点。
本文首先对钕铁硼废料产生的途径及成分特点进行简要介绍,然后综述了各种循环处理方法(湿法、火法、回收新方法、短流程再生制造)的研究现状及问题,并对未来的发展趋势进行了展望,以期为钕铁硼废料的综合利用提供一定参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李世健
崔振杰
李文韬
王东
王志
关键词:  钕铁硼废料  循环利用  湿法  火法  再生制造  稀土资源    
Abstract: NdFeB magnet is one of the important rare earth functional materials. With the rapid development of new energy vehicles, wind power generation, electronic equipment and other industries, the demand for NdFeB magnets has been increased year by year. China is the largest producer of NdFeB in the world. The annual output is nearly 170 000 t, accounting for nearly 90% of world production. About 30% waste is produced during production process. In addition, a large number of magnets are discarded when the service life is reached. These wastes contain 20%—30% rare earth elements, which are valuable secondary resources. Waste recycling is not only conducive to environmental protection, but also contributes to the sustainable development of the rare earth industry.
The composition characteristics of various NdFeB waste are quite different. Therefore, the treatment methods are also different. There are two research directions: (Ⅰ) recovery of rare earth elements from NdFeB waste; (Ⅱ) magnet regeneration manufacturing. The recovery method consists of hydrometallurgy and prometallurgy. How to achieve the organic unity of rare earth regeneration product quality, environmental friendliness and economy has become the hotspot and difficulty.
The hydrometallurgy technologies include hydrochloric acid total solution method, hydrochloric acid optimal solution method, sulfate double salt precipitation method, etc. The general characteristics of these technologies are list as follows: the rare earth is separated from other elements by controlling the pH value. Single rare earth compound is obtained by multistage extraction. Then, the rare earth is converted into salt by precipitator, and the single rare earth oxide is obtained after calcination. These methods are highly adaptable to different raw materials, the purity of rare earth products is high. However, the process is long and environmentally unfriendly. The prometallurgy technologies include oxidation method, chlorinate method, liquid alloy extraction method, etc. The principle is based on the ability of rare earth elements and other elements to combine with oxygen, chlorine and alloying elements. These methods are short-process and relatively environmentally friendly, but mixed rare earth compounds are usually obtained. In addition, these methods are not industrialized. In recent years, new recovery methods have been developed at home and abroad, such as electrolysis method, ionic liquid method, hydrolysis method, etc., but they are still in their infancy. Mixed rare earth compound are obtained by electrolysis and hydrolysis method. Ionic liquid method has the advantages of good separation efficiency and high system stability, showing good prospect. Short-process regenerative manufacturing methods mainly include hydrogen detonation method, doping method, etc. These methods are short-process and relatively environmentally friendly. However, magnetic property usually decrease to a certain extent, which will further limit its application. How to ensure the property of regenerative magnets is the key point of regenerative manufacturing development in the future.
This article briefly introduces the sources and characteristics of NdFeB waste, then summarizes the research status and problems of various recovery methods (hydrometallurgy, pyrometallurgy, new recycling methods, short-process regeneration manufacturing). The research development tendency is also prospected. The article is expected to provide a reference for the comprehensive utilization of NdFeB waste.
Key words:  NdFeB waste    cycling utilization    hydrometallurgy    pyrometallurgy    regeneration manufacturing    rare earth resources
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  X758  
基金资助: 国家重点研发计划项目(2020YFC1909004); 北京市自然科学基金(2192055)
作者简介:  李世健,2013年6月、2016年1月、2020年1月毕业于北京科技大学,分别获工学学士、硕士、博士学位。现为中国科学院过程工程研究所在站博士后,在王志研究员的指导下从事冶金二次资源综合利用技术及基础研究。
王志,研究员,博士研究生导师,中科院过程工程研究所资源环境绿色过程工程研究部副主任,国家自然科学优秀青年基金获得者。获中国有色金属工业科学技术奖一等奖(2019),中国产学研合作创新奖(2016),北京市科技新星(2008),中国有色金属冶金科技论文一等奖(2015,2017)等。任中国有色金属学会专家委员会委员、中国硅酸盐学会家委员会委员、北京市能源与环境学会委员等。开展有色金属战略资源循环过程精深分离、分质利用和产品高值化研究,构建了“多尺度相态设计-界面传递强化-产品构效调控-短程清洁工艺”一体化绿色技术体系。承担完成了20余项国家重点研究计划重点专项项目、国家科技支撑计划、国家自然科学基金、北京市自然科学基金以及企业合作项目。在化工冶金领域核心期刊MMTB、Hydrometallurgy、Crystal Growth & Design、Advanced Energy Materials等发表SCI论文140余篇,授权发明专利60余项。
引用本文:    
李世健, 崔振杰, 李文韬, 王东, 王志. 钕铁硼废料循环利用技术现状与展望[J]. 材料导报, 2021, 35(3): 3001-3009.
LI Shijian, CUI Zhenjie, LI Wentao, WANG Dong, WANG Zhi. Technical Actuality and Prospect of NdFeB Waste Recycling. Materials Reports, 2021, 35(3): 3001-3009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070004  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3001
1 Wang C M, Liu Y Z, Zhao L S, et al.Materials China,2018,37(11),842(in Chinese)王春梅,刘玉柱,赵龙胜,等.中国材料进展,2018,37(11),842.2 Chen L J, Li Z L, Gong A, et al.Journal of the Chinese Society of Rare Earths,2019,37(3),259(in Chinese).陈丽杰,李子良,龚傲,等.中国稀土学报,2019,37(3),259.3 Ma Y, Zhao Y Z.Rare Earth Information,2019(11),11(in Chinese).马莹,赵永志.稀土信息,2019(11),11.4 Yang Y X, Walton A, Sheridan R, et al.Journal of Sustainable Metallurgy,2017,3,126.5 Firdaus M, Rhamdhani M A, Durandet Y, et al.Journal of Sustainable Metallurgy,2016,2,276.6 Jha M K, Kumari A, Panda R, et al.Hydrometallurgy,2016,165,2.7 Fu L W, Wang J L, Lei X, et al.Nonferrous Metals Science and Engineering,2020,11(1),92(in Chinese).付利雯,汪金良,雷翔,等.有色金属科学与工程,2020,11(1),92.8 Xiao J R.Research on recovery and reuse technology of sintered NdFeB permanent magnet block waste. Master's Thesis, South China University of Technology, China,2018(in Chinese).肖俊儒. 烧结钕铁硼永磁块体废料的回收和再利用技术研究.硕士学位论文,华南理工大学,2018.9 Firdaus M, Rhamdhani M A, Durandet Y, et al.Journal of Sustainable Metallurgy,2016,2,277.10 Asabe K, Saguchi A, Takahashi W, et al.Materials Transactions,2001,42(12),2489.11 Nakamoto M, Kubo K, Katayama Y, et al.Metallurgical and Materials Transactions B,2012,43B,469.12 Saeki T, Akahori T, Miyamoto Y, et al.Rare metal technology, Wiley,2014,pp.103.13 Minowa T.Resource Geology,2008,58(4),414.14 Zakotnik M, Harris I R, Williams A J.Journal of Alloys and Compounds,2008,450,525.15 Bian Y Y, Guo S Q, Jiang L, et al.Journal of Sustainable Metallurgy,2015,1(2),151.16 Chen Y J.China Resources Comprehensive Utilization,2004(6),10(in Chinese).陈云锦. 中国资源综合利用,2004(6),10.17 Wang Y J, Liu Y H, Guo J X, et al.Hydrometallurgy of China,2006,25(4),195(in Chinese).王毅军,刘宇辉,郭军勋,等.湿法冶金,2006,25(4),195.18 Lyman J W, Palmer G R.High Temperature Materials and Processes,1993,11(1-4),175.19 Xiao R H.Nonferrous Metallurgy,2001(1),23(in Chinese).肖荣晖. 有色冶炼,2001(1),23.20 Yin X W, Liu M, Lai W H, et al.Chinese Journal of Rare Metals,2014,38(6),1093(in Chinese).尹小文,刘敏,赖伟鸿,等.稀有金属,2014,38(6),1093.21 Rabatho J P, Tongamp W, Takasaki Y, et al.Journal of Material Cycles and Waste Management,2013,15(2),171.22 Saito T, Sato H, Ozawa S, et al.Journal of Alloys and Compounds,2003,353,189.23 Saito T, Sato H, Motegi T.Journal of Alloys and Compounds,2006,425,145.24 Bian Y Y.Development of novel processes on the recovery of rare earth elements from NdFeB-based permanent magnet wastes. Ph.D. Thesis, Shanghai University, China,2016(in Chinese).卞玉洋. 从钕铁硼废料中回收稀土元素的新工艺研究.博士学位论文,上海大学,2016.25 Abrahami S T, Xiao Y P, Yang Y X.Mineral Processing and Extractive Metallurgy,2015,124(2),106.26 Yang Y X, Abrahami S T, Xiao Y P.In: 3rd International Slag Valorisation Symposium. Leuven,2013.27 Uda T.Materials Transactions,2002,43(1),55.28 Shirayama S, Okabe T H.Metallurgical and Materials Transactions B,2018,49,1067.29 Hua Z S, Wang J, Wang L, et al.ACS Sustainable Chemistry Enginee-ring,2014,2,2536.30 Mochizuki Y, Tsubouchi N, Sugawara K.ACS Sustainable Chemistry Engineering,2013,1,655.31 Adachi G Y, Machida K, Murase K.Journal of Alloys and Compounds,1995,217,218.32 Itoh M, Miura K, Machida K.Journal of Alloys and Compounds,2009,477,484.33 Gorsse S, Hutchinson C R, Chevalier B, et al.Journal of Alloys and Compounds,2005,392,253.34 Zaplatynsky O V, Prots Y M, Salamakha P S, et al.Journal of Alloys and Compounds,1996,232,1.35 Ellis T W, Schmidt F A.US patent,5437709,1995.36 Takeda O, Okabe T H, Umetsu Y.Journal of Alloys Compounds,2006,408-412,387.37 Takeda O, Okabe T H, Umetsu Y.Journal of Alloy and Compounds,2004,379,305.38 Oishi T, Konishi H, Nohira T, et al.Kagaku Kogaku Ronbunshu,2010,36(4),299.39 Venkatesan P, Vander H T, Hennebel T, et al.Green Chemistry,2018,20,1065.40 Riano S, Foltova S S, Binnemans K.RSC Advances,2020,10,307.41 Onal M A R, Dewilde S, Degri M, et al.Green Chemistry,2020,22,2821.42 Kumari A, Sahu K K, Sahu S K.Metals Open Access Metallurgy Journal,2019,9(2),269.43 Kikuchi Y, Matsumiya M, Kawakami S.Solvent Extraction Research and Development Japan,2014,21(2),137.44 Padhan E, Sarangi K.Hydrometallurgy,2017,167,134.45 Liu B W, Zhu N W, Li Y, et al.Process Safety and Environmental Protection,2019,124,317.46 Sheridan A J, Williams I R, Harris A.Journal of Magne-tism and Magnetic Materials,2014,350,114.47 Perigo E A, Silva S C, Martin R V, et al. Journal of Applied Physics,2012,111,07A725-1.48 Li X T, Yue M, Zakotnik M, et al.Journal of Rare Earths,2015,33(7),736.49 Liu W Q, Li C, Zakotnic M, et al.Journal of Rare Earths,2015,33(8),846.50 Zakotnik M, Tudor C O.Waste Management,2015,44,48.51 Gandha K, Ouyang G Y, Gupta S.Waste Management,2019,90,94.52 Saguchi A, Asabe K, Fukuda T, et al.Journal of Alloys and Compounds,2006,408-412,1377.53 Li X T.Study on regeneration technique and mechanism for NeFeB sintered magnet wastes. Ph.D. Thesis, Beijing University of Technology, China,2016(in Chinese).李现涛. 烧结钕铁硼废料的再制造技术及机理研究.博士学位论文,北京工业大学,2016.
[1] 曲涛, 谷旭鹏, 施磊, 罗铭洋, 王强, 吕飞, 田源, 戴永年. 高镁硅红土镍矿开发利用研究现状[J]. 材料导报, 2020, 34(Z1): 261-267.
[2] 包朝玲, 陈秀琼, 雷梦圆, 柯超然, 张威, 颜慧琼, 林强. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176.
[3] 陈长军, 陈振斌, 孙元, 唐俊杰, 候桂臣, 张洪宇, 刘文强. 高温合金废料回收再利用的研究进展及未来发展方向[J]. 材料导报, 2019, 33(21): 3654-3661.
[4] 赖惠先, 蔡华宪, 孟金水, 盛之林, 张尧昊, 罗学涛. FeSi2Ti相重构对工业硅中杂质酸洗行为的影响[J]. 材料导报, 2019, 33(10): 1609-1614.
[5] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[6] 刘成红, 王均安, 熊邦汇, 张植权, 陈纪昌, 贺英. 立方织构Ni-Cr-Mo-W合金薄带及其性能*[J]. 《材料导报》期刊社, 2017, 31(20): 53-57.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed