Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3654-3661    https://doi.org/10.11896/cldb.18090163
  金属与金属基复合材料 |
高温合金废料回收再利用的研究进展及未来发展方向
陈长军1,2,3, 陈振斌1,2, 孙元3, 唐俊杰3,4, 候桂臣3, 张洪宇3, 刘文强3
1 兰州理工大学材料科学与工程学院, 兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
3 中国科学院金属研究所,沈阳110016
4 辽宁科技学院生物医药与化学工程学院,本溪 117004
Research Progress and Future Development Direction of Recyclingand Reuse of Superalloy Scraps
CHEN Zhangjun1,2,3, CHEN Zhenbin1,2, SUN Yuan3, TANG Junjie3,4, HOU Guichen3, ZHANG Hongyu3,LIU Wenqiang3
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
4 College of Biological Medicine and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004
下载:  全 文 ( PDF ) ( 16018KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着我国航空航天事业的飞速发展,高温合金的年产量逐年增加,与此同时,制造过程中产生的高温合金废料也越来越多,废料的堆积造成了严重的资源浪费和环境污染。近来,由于金属学及材料学等多学科交叉融合并发展迅速,国内在高温合金废料及其返回料回收再利用方面取得了一定的研究进展,但与欧美等发达国家相比仍存在巨大的差距。
    高温合金回收效率受其牌号、组成等因素的影响。传统的湿法、火法、湿法火法结合工艺很难从根本上取得突破。因此,近年来除了在基本工艺的基础上进行优化改进外,研究者们主要从预处理、选择合理的浸出液及电解液、设计高效萃取剂、合成新型分离材料等方面不断尝试,并取得了阶段性成果,在充分发挥现有回收工艺效率的同时大幅提升了高温合金中主要元素的回收效率。
    迄今为止,能成功实现较高效率地回收高温合金废料的方法主要包括酸浸法、电解法、离子交换法、萃取法等。其中,酸浸法应用得最早,可采用酸液浸出法对含铼高温合金废料进行回收再利用。优化工艺参数可使高温合金废料中铼浸出率达99%以上,但回收效率受钝化膜的阻碍逐渐降低且产生废酸、废气,因此其发展受到限制。近年来,采用直流电源,以合金为阳极、石墨为阴极,在氯化物的电解液中能有效破除合金废料在电化学溶解过程中的钝化膜,显著提升回收效率,备受研究者的青睐。在电解的基础上以有机溶剂为电解液、氯化物为电解质,结合萃取、离子交换及吸附等工艺,实现对合金废料中元素的分类回收,为高温合金废料绿色可持续回收提供了可能。
    本文从废料的来源与特性及回收工艺两方面总结了高温合金废料回收再利用的研究进展,着重对国内外湿法、火法、湿法火法结合工艺进行了介绍,并分析了高温合金废料回收技术的未来研究方向,以期为这一领域的相关研究和工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈长军
陈振斌
孙元
唐俊杰
候桂臣
张洪宇
刘文强
关键词:  高温合金废料  湿法  火法  湿法火法结合工艺    
Abstract: In recent years, with the rapid development of China’s aerospace industry, the annual output of superalloy is hitting record highs. At the same time, more and more superalloy scraps are produced in the manufacturing process, and the accumulation of scraps leads to serious waste of resources and environmental pollution.
    Thanks to the multi-disciplinary cross-integration development of metallurgy and materials science, the domestic research on the recovery and reuse of superalloy scrap and its return scrap has got some achievements, but there is still a huge gap against developed countries such as Europe and America.
    The recovery efficiency of superalloys is affected by their grades and composition. It is difficult to make fundamental breakthroughs by adopting traditional processes like pyrometallurgy, hydrometallurgy, and combination of pyro and hydrometallurgy. Therefore, in recent years, in addition to optimize and improve these basic technology, the researchers have tried continuously from pretreatment, selecting reasonable leachate and electrolyte, designing high-efficiency extractant, synthesizing new separation materials, etc., and have acquired noticeable results. Therefore, the potential of existing recycling processes can be fully achieved, while the recovery efficiency of the main elements in the superalloy is also improved greatly.
    So far, the high-efficiency recovery methods of superalloy scraps mainly include acid leaching, electrolysis, ion exchange, extraction, etc. Among them, the acid leaching method was the earliest to get applied, and the single crystal superalloy scraps containing Re can be recycled by this method. By optimizing the process parameters, the leaching rate of Re in the single crystal superalloy scraps can exceed 99%, but the reco-very efficiency is gradually reduced due to the hindrance of the passivation film, and moreover, the leaching process produces waste acid and waste gas. For the past few years, the electrolytic process with DC power supply, alloy anode and graphite cathode has attained researchers’ interest, as it can effectively breaks the passivation film of the alloy scraps in the dissolution process, and in consequence, greatly improves the recovery efficiency. By using extraction, ion exchange and adsorption processes, a combinatorial methodology which incorporates electrolysis and subsequent processes, i.e. extraction, ion exchange, adsorption, can realize the classification and recovery of elements in alloy scraps. It provides a possibility for green and sustainable recycling of superalloy scraps.
    This paper offers a summary over research progress of the recovery and reuse of superalloy scraps, from the perspectives of sources and cha-racteristics of the scraps and the recovery process, with emphasis on pyrometallurgy, hydrometallurgy, and combination of pyro and hydrometallurgy. In addition, the future research direction of the superalloy scraps recovery technology is analyzed, with a view to providing references for relevant research and engineering applications in this field.
Key words:  superalloy scraps    pyrometallurgy    hydrometallurgy    combination of pyro and hydrometallurgy
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG146.4  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHZD003);辽宁科学院博士启动基金(1810B06)
作者简介:  陈长军,2017年6月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室研究生,在陈振斌教授的指导下进行研究。目前主要研究领域为高温合金废料回收再利用。
    陈振斌,兰州理工大学材料科学与工程学院教授、博士研究生导师。1994年7月本科毕业于西北师范大学化学系,2002—2007年在兰州大学硕博连读并取得博士学位,期间于2008—2011年在中国科学院兰州化物所从事在职博士后研究工作,2014—2015年在美国麻省大学从事访问学者研究工作。获邀成为Chemical Engineering Journal、Separation & Purification Technology、Physical Chemistry Chemical Physics等30余种SCI期刊的审稿专家。目前主要研究领域为高温合金回收与再利用。
    孙元,中国科学院金属研究所副研究员。1996—2011年在哈尔滨工业大学学习并取得学士学位、硕士学位及博士学位,期间曾在日本大阪大学进行留学研究工作,2011—2013年在中国科学院金属研究所从事博士后研究工作。目前主要研究领域为高温合金回收与再利用。
引用本文:    
陈长军, 陈振斌, 孙元, 唐俊杰, 候桂臣, 张洪宇, 刘文强. 高温合金废料回收再利用的研究进展及未来发展方向[J]. 材料导报, 2019, 33(21): 3654-3661.
CHEN Zhangjun, CHEN Zhenbin, SUN Yuan, TANG Junjie, HOU Guichen, ZHANG Hongyu,LIU Wenqiang. Research Progress and Future Development Direction of Recyclingand Reuse of Superalloy Scraps. Materials Reports, 2019, 33(21): 3654-3661.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090163  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3654
1 Sun X F, Jin T, Zhou Y Z,et al. Materials China, 2012, 31(12), 1(in Chinese).
孙晓峰, 金涛, 周亦胄, 等. 中国材料进展, 2012, 31(12), 1.
2 Song Z Y. Electrochemical dissolution behavior of a nickel-based superalloy in the process of hydrometallurgy. Master's Thesis, University of Chinese Academy of Sciences, China, 2017 (in Chinese).
宋增益. 一种镍基高温合金湿法冶金过程中的电化学溶解行为研究. 硕士学位论文, 中国科学院大学, 2017.
3 Guo J T. Superalloy material science, Science Press, China, 2010(in Chinese).
郭建亭. 高温合金材料学, 科学出版社, 2010.
4 Xing W D, Fan X X, Dong H G, et al.Rare Metals, 2013, 37(3), 494(in Chinese).
行卫东, 范兴祥, 董海刚, 等. 稀有金属, 2013, 37(3), 494.
5 Feng R S, Xu S M.Hydrometallurgy, 2012, 31(6), 338(in Chinese).
冯瑞姝, 徐盛明. 湿法冶金, 2012, 31(6), 338.
6 Reck B K, Graedel T E. Science, 2012, 337(6095), 690.
7 Wu X, Wu Y Q, Meng H Q. China Molybdenum, 2015, 39(1), 9(in Chinese).
吴贤, 吴永谦, 孟晗琪. 中国钼业, 2015, 39(1), 9.
8 Li C G, Fu H Z, Yu Q. Aerospace materials, National Defense Industry Press, China, 2002(in Chinese).
李成功, 傅恒志, 于翘. 航空航天材料, 国防工业出版社, 2002.
9 Wang H T, Feng X D, Wang S R, et al. Modern Manufacturing Techno-logy and Equipment, 2001(6), 5(in Chinese).
王海涛, 冯新德, 王守仁, 等. 现代制造技术与装备, 2001(6), 5.
10 Wang W Z. Roles of rhenium and cobalt in single superalloys. Ph. D. Thesis, Institute of Metal Research, Chinese Academy of Sciences, China, 2008 (in Chinese).
王文珍. 铼和钴在单晶高温合金中的作用. 博士学位论文, 中国科学院金属研究所, 2008.
11 Donachie M J, Donachie S J. Superalloys: A technical guide, ASM International Press, USA, 2002.
12 Murr L E, Martinez E, Pan X M, et al. Acta Materialia, 2013, 61(11), 4289.
13 Xing W D, Fan X X, Dong H G, et al. The Chinese Journal of Process Engineering, 2013, 13(6), 969(in Chinese).
行卫东, 范兴祥, 董海刚, 等. 过程工程学报, 2013, 13(6), 969.
14 Binnemans K, Jones P T, Blanpain B, et al. Journal of Cleaner Production, 2013, 51, 1.
15 Ma R J. Hydrometallurgy, 2007, 26(1), 1(in Chinese).
马荣骏. 湿法冶金, 2007, 26(1), 1.
16 Srivastava R R, Kim Min S, Lee J C. et al. Journal of Materials Science, 2014, 49(14), 4671.
17 Wang H G, Shi W F, Nie Z R, et al. Science & Technology Review, 2016, 34(17), 33(in Chinese).
王怀国, 史文方, 聂祚仁, 等. 科技导报, 2016, 34(17), 33.
18 Wang Z J, Wang J K, Guo R, et al. Nonferrous Metals (Extractive Metallurgy), 2014(8), 5(in Chinese).
王治钧, 王靖坤, 郭瑞, 等. 有色金属(冶炼部分), 2014(8), 5.
19 Wang J K, Meng H Q, Wang Z J, et al. Nonferrous Metals (Extractive Metallurgy), 2014(5), 1(in Chinese).
王靖坤, 孟晗琪, 王治钧, 等. 有色金属(冶炼部分), 2014(5), 1.
20 Ferron G G, Seeley L E. U.S. patent, US8956582B2, 2015.
21 Luederitz E, Schlegel U R, Halpin P T, et al. U.S. patent application, US20130078166Al, 2013.
22 杜明焕, 马光, 吴贤. 等. 中国专利, CN102994760A, 2013.
23 Wang Z J, Wang J K, Chen K K, et al. Nonferrous Metals (Extractive Metallurgy), 2014(6), 46(in Chinese).
王治钧, 王靖坤, 陈昆昆, 等. 有色金属(冶炼部分), 2014(6), 46.
24 郑雅杰, 陈昆昆. 中国专利, CN101928834A, 2010.
25 张卜升, 许万祥, 吴永谦, 等. 中国专利, CN103773965A, 2014.
26 吴跃东, 范兴祥, 董海刚, 等. 中国专利, CN103233125A, 2013.
27 李进, 杜明焕, 马光, 等. 中国专利, CN102978406A, 2012.
28 Chen K K, Wang Z J, Wu Y Q, et al. Rare Metals, 2015, 39(11), 1025(in Chinese).
陈昆昆, 王治钧, 吴永谦, 等. 稀有金属, 2015, 39(11), 1025.
29 李长生, 梁家青, 范有志,等. 中国专利, CN102399990A, 2012.
30 Shen Y F. The Chinese Journal of Process Engineering, 2000, 9(3), 60(in Chinese).
申勇峰. 过程工程学报, 2000, 9(3), 60.
31 Liu Y, Deng L, Liu L, et al. Rare Metals, 2017, 41(6), 679(in Chinese).
刘洋, 邓丽, 刘莉, 等. 稀有金属, 2017, 41(6), 679.
32 Zhang B, Wang J, Wu B, et al. Nature Communications, 2018, 9, 2559.
33 Meng H Q, Wu X, Chen K K. Nonferrous Metals, 2014(4), 44(in Chinese).
孟晗琪, 吴贤, 陈昆昆. 有色金属工程, 2014(4), 44.
34 范兴祥, 董海刚, 吴跃东, 等. 中国专利, CN103436721A, 2013.
35 Hou X C, Xiao L S, Gao C K. Hydrometallurgy, 2009, 28(3), 164(in Chinese).
侯小川, 肖连生, 高从堦. 湿法冶金, 2009, 28(3), 164.
36 Woulds M J. Superalloys, 1980, 1, 31.
37 Viktor S, Armin O. U.S. patent application, US20080110767A1, 2008.
38 Brooks P T, Martin D A. U.S. patent application, USA3607236, 1971.
39 Kim M S, Lee J C, Park H S, et al. Hydrometallurgy, 2018, 176(3), 235.
40 Srivastava R R, Kim M S, Lee J C. Industrial & Engineering Chemistry Research, 2016, 55(29), 8191.
41 Kim M S, Lee J C, Kim E Y, et al. Journal of the Korean Institute of Resources Recycling, 2010, 19(5), 25.
42 Yagi R, Okabe T H. Metallurgical & Materials Transactions, 2017, 48(1), 335.
43 Kumbasar R A. Separation and Purification Technology, 2009, 68(2), 208.
44 Ali A M, Ajji Z. Radiation Physics and Chemistry, 2009, 78(11), 92.
45 Hachemaoui A, Belhamel K. International Journal of Mineral Processing, 2017, 161, 7.
46 Chen Y H, Wang H Y, Pei Y C, et al. Talanta, 2018, 182, 450.
47 Ichlas Z T, Ibana D C. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1), 37.
48 Kazuo Kondo, Sinichi Hirao, Michiaki Matsumoto. Hydrometallurgy, 2014, 149, 87.
49 Murray A, Örmeci B. Journal of Environmental Sciences, 2018, 66, 310.
50 A Murray, Örmeci B, Lai E P. Water Science and Technology, 2016, 73(1), 176.
51 Pan B J, Qiu H, Pan B C, et al. Water Research, 2010, 44(3), 815.
52 Pyrzyńska K, Bystrzejewski M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1-3), 102.
53 Sengupta A K. Environmental separation of heavy metals: Engineering processes, CRC Press, Washington, D.C. 2002.
54 Zhao X, Lv L, Pan, B, et al. Chemical Engineering Journal, 2011, 170(2-3), 381.
55 Murray A, Örmeci B. Journal of Environmental Sciences, 2019, 75, 247.
56 Hérès X, Blet V, Patricia Natale D, et al. Metals, 2018, 8, 682.
57 Fathi M B, Rezai1 B, Alamdari E K, et al. Journal of Mining & Environment, 2018, 9(1), 243.
58 Lu K. Nature Reviews, DOI:10.1038/natrevmats.2016.19.
59 Jiang S, Wang H, Wu Y.Nature, 2017, 544(7651), 460.
60 Li X Y, Lu K.Nature Materials, 2017, 16(7), 700.
[1] 赖惠先, 蔡华宪, 孟金水, 盛之林, 张尧昊, 罗学涛. FeSi2Ti相重构对工业硅中杂质酸洗行为的影响[J]. 材料导报, 2019, 33(10): 1609-1614.
[2] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[3] 刘成红, 王均安, 熊邦汇, 张植权, 陈纪昌, 贺英. 立方织构Ni-Cr-Mo-W合金薄带及其性能*[J]. 《材料导报》期刊社, 2017, 31(20): 53-57.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed