Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14079-14086    https://doi.org/10.11896/cldb.19100202
  无机非金属及其复合材料 |
低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响
孙道胜1, 2, 王辉2, 刘开伟1, 2, 王爱国1, 2, 李萍2, 张高展1, 2, 管艳梅1, 2
1 安徽省先进建筑材料重点实验室, 合肥 230601
2 安徽建筑大学材料与化学工程学院, 合肥 230601
Effect of Fly Ash on Performance of Mortars Partially Exposed to Sulfate Solution Under Low Humidity
SUN Daosheng1, 2, WANG Hui2, LIU Kaiwei1, 2, WANG Aiguo1, 2, LI Ping2, ZHANG Gaozhan1, 2, GUAN Yanmei1, 2
1 Anhui Key Laboratory of Advanced Building Materials, Hefei 230601, China
2 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 8222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 T=(20±3) ℃、相对湿度RH=(35±5)%的低湿度环境下,将粉煤灰掺量为0%、15%、30%和45%的水泥砂浆半浸泡在5%(质量分数)Na2SO4溶液中进行180 d侵蚀实验。研究侵蚀前后砂浆的孔结构、毛细吸附传输特性、砂浆试件盐结晶区的SO42-浓度以及侵蚀剥落体积与质量变化,并采用XRD、SEM等手段对侵蚀产物和微观结构进行表征。研究结果表明:提高粉煤灰掺量会增加砂浆毛细孔占比,导致其在水中以及硫酸钠溶液中的毛细吸附传输特性明显加强,提高了砂浆试件盐结晶区硫酸根离子的浓度。未掺粉煤灰的PO组被侵蚀180 d后,砂浆试件盐结晶破坏区侵蚀产物除了有硫酸钠外,还形成了较多的石膏相,引起砂浆试件盐结晶区破坏的主要原因是化学侵蚀。掺有粉煤灰组分的砂浆试件盐结晶区侵蚀产物有较多的硫酸钠,未明显观察到石膏。且随着粉煤灰掺量的增加砂浆试件侵蚀破坏越严重,表现为更加严重的物理型盐结晶造成的侵蚀破坏,导致砂浆试件质量损失增多。这表明砂浆试件随粉煤灰掺量的增加可进一步细化孔隙,在低湿度环境下,更有利于硫酸盐溶液的毛细吸附传输速率的增加,引起更严重的物理型盐结晶侵蚀破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙道胜
王辉
刘开伟
王爱国
李萍
张高展
管艳梅
关键词:  低湿度  半浸泡  硫酸盐侵蚀  粉煤灰  侵蚀机理  物理盐结晶    
Abstract: Cement mortars containing 0%, 15%, 30%, and 45% of fly ash were partially immersed in 5wt% Na2SO4 solution for 180d corrosion experiments in T=(20±3) ℃, RH=(35±5)% of relative low humidity environment. The pore structure, capillary sorptivity transportation characteristics, SO42- concentration and volume-loss and mass-loss of the mortars before and after erosion were analyzed, the erosion products were characterized by XRD and SEM. The results show that with the increase of fly ash content for mortars increase the proportion of capillary pores, results in a significant increase in capillary sorptivity transmission characteristics and causes higher SO42- concentration in crystallization zone. The sample without fly ash PO sample, after erosion for 180 days, except for sodium sulfate, the erosion products in the salt crystallization zone of the mortar specimen form more gypsum phase, the main reason for the destruction of the salt crystallization zone of the mortars is chemical erosion. While the sample addition with fly ash samples, the products of salt crystallization zone of sample has only sodium sulfate, and no gypsum obviously. And with the increase of the amount of fly ash, the damage of the mortar specimen is more serious, and shows as more severe physical salt attack, results in much more serious mass-loss of the mortar specimen. It indicates that the mortars with the increase of the amount of fly ash specimen can refine the pores. In the low humidity environment, it will increase the capillary sorptivity transmission rate of the sulfate solution and caused more serious physical salt crystal damage.
Key words:  low humidity    partially immersion    sulfate attack    fly ash    erosion mechanism    physical sulfate attack
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51578004;51608004;51778003);安徽省教育厅自然科学基金(KJ2018JD18);安徽建筑大学博士启动基金(2018QD49)
作者简介:  孙道胜,安徽建筑大学硕士生导师,中国科学院合肥物质科学研究院博士生导师, 1986年本科毕业于重庆大学,2004年研究生毕业于南京工业大学材料学专业,获工学博士。2005年获聘教授,安徽省硅酸盐学会常务理事,安徽省水泥标准化技术委员会常务理事,安徽省水泥协会常务理事。主要从事高性能混凝土、工业灰渣资源化利用、先进建筑材料等方面的研究工作。
刘开伟,2014年获南京工业大学材料学博士学位。主持和参与国家自然科学基金面上项目、安徽省高校自然科学研究重点研究项目、高性能土木工程材料国家重点实验室开放课题、材料化学工程国家重点实验室开放课题和安徽建筑大学开放课题等多个省部级以上项目10项,参与《海洋工程水泥与混凝土材料》的编写。主要从事固体废弃物的综合利用和先进建筑功能材料等方面的研究工作。
引用本文:    
孙道胜, 王辉, 刘开伟, 王爱国, 李萍, 张高展, 管艳梅. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086.
SUN Daosheng, WANG Hui, LIU Kaiwei, WANG Aiguo, LI Ping, ZHANG Gaozhan, GUAN Yanmei. Effect of Fly Ash on Performance of Mortars Partially Exposed to Sulfate Solution Under Low Humidity. Materials Reports, 2020, 34(14): 14079-14086.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100202  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14079
1 Sun D S, Cheng X X, Liu K W, et al. Materials Reports A:Review Papers, 2018, 32(12), 112(in Chinese).
孙道胜, 程星星, 刘开伟, 等. 材料导报:综述篇, 2018, 32(12), 112.
2 Liu Z Q, Deng D H, Schutter G D, et al. Journal of the Chinese Ceramic Society, 2012, 81(2), 186(in Chinese).
刘赞群, 邓德华, Schutter G D, 等, 硅酸盐学报, 2012, 81(2), 186.
3 Ma K L, Xie Y J, Long G C, et al. Journal of Central South University:Science and Technology, 2010, 41(1), 303(in Chinese).
马昆林, 谢友均, 龙广成, 等. 中南大学学报:自然科学版, 2010, 41(1), 303.
4 Li H, Sun W, Zuo X B. Journal of the Chinese Ceramic Society, 2012, 40(8), 1119.
5 Kawamura M, Torii K, Taniguchi K. Cement & Concrete Research, 1995, 25(4), 759.
6 Liu K W, Sun D S, Wang A G, et al. Journal of Materials in Civil Engineering, 2018, 30(12), 04018309.
7 Bakharev T, Sanjayan J G. Cement & Concrete Research, 2002, 32(2), 211.
8 Pan Z H, Guo S H, Wang X B, et al. In: The 8th International Symposium on Cement&Concrete Abstract. Najing, 2013, pp. 78.
9 Torii K, Kawamura M. Cement & Concrete Research, 1994, 24(2), 361.
10 Sokkary T M E, Assal H H, Kandeel A M. Ceramics International, 2004, 30(2), 133.
11 Zhang F C, Zhao Y, Zhu F W. Journal of Hohai University, 2014, 42(5), 439.
12 Adanan . Cement & Concrete Research, 2003, 33(4), 585.
13 Rodriguez C R E, Uribe A R. Cement & Concrete Research, 2002, 32(12), 1851.
14 Stark D. Durability of concrete in sulfate-rich soils. Portland Cement Association, USA, 1989.
15 Stark D. Performance of concrete in sulfate environments. Portland Cement Association, USA, 2002.
16 Irassar E F, Maio A D, Batic O R. Cement & Concrete Research, 1996, 26(1), 113.
17 Liu Z Q, Deng D H, Schutter G D, et al. Construction & Building Materials, 2012, 28(1), 230.
18 Pel L, Huinink H, Kopinga K, et al. Construction & Building Materials, 2004, 18(5), 309.
19 Puyate Y T, Lawrence C J. Chemical Engineering Science, 1999, 54(19), 4257.
20 Liu Z Q, Liu X N, Hou Y, et al. Journal of Building Materials, 2017, 20(3), 439(in Chinese).
刘赞群, 刘湘宁, 侯乐, 等. 建筑材料学报, 2017, 20(3), 439.
21 Ma K L, Xie Y J, Long G C. Journal of the Chinese Ceramic Society, 2012, 40(10), 1448(in Chinese).
马昆林, 谢友均, 龙广成. 硅酸盐学报, 2012, 40(10), 1448.
22 Thaulow N, Sahu S. Materials Characterization, 2004, 53(2-4), 123.
23 Ma K L, Xie Y J, Long G C, et al. Journal of the Chinese Ceramic Society, 2007, 35(10), 1376.
24 Liu Z Q, Deng D H, Schutter G D, et al. Cement & Concrete Composites, 2011, 33(2), 179.
25 Chen F, Gao J M, Qi B, et al. Construction & Building Materials, 2017, (154), 849
26 Yang S Y, Ma Z, Ma X L, et al. Journal of Ningxia University: Natural Science Edition, 2017, 38(4), 433(in Chinese).
杨淑雁,马钊,马小林,等. 宁夏大学学报:自然科学版, 2017, 38(4), 433
27 Liu Z Q, Li X N, Deng D H, et al. Materials & Structures, 2016, 49(1-2), 719.
28 Liu Q, Shen X D, Xue H J, et al. Journal of Functional Materials, 2017, 48(10), 10066(in Chinese).
刘倩,申向东,薛慧君,等. 功能材料, 2017, 48(10), 10066.
29 Liu Z Q, Hu W L, Hou L. Construction & Building Materials, 2018, 193, 211.
30 Zhang S Y. Corrosion mechanism of concrete subjected to sulfate salt in complex environment.Master's Thesis, Qingdao Technological University, China, 2014(in Chinese).
张淑媛.复杂环境下混凝土硫酸盐侵蚀机理.硕士学位论文, 青岛理工大学, 2014.
31 Mehta, P K, Monteiro P J M. Concrete: microstructure, properties, and materials, third edition, McGraw-Hill Professional, USA, 2006.
32 Zhang J Z, Bian F, Zhang Y R, et al. Construction & Building Mate-rials, 2018, 163, 402.
33 Hall C. Magazine of Concrete Research, 1989, 41, 51.
34 He Z M, Long G C, Xie Y J, et al. Journal of Building Materials, 2012, 15(2), 190(in Chinese).
贺智敏, 龙广成, 谢友均, 等. 建筑材料学报, 2012,15(2), 190.
35 Feng S X, Wang P M. Journal of Building Materials, 2017, 20(3), 321(in Chinese).
丰曙霞, 王培铭. 建筑材料学报, 2017, 20(3), 321.
36 Jin Y N, Zhou S X. Journal of East China Jiaotong University, 2006, 23(5), 4(in Chinese).
金雁南, 周双喜. 华东交通大学学报, 2006, 23(5), 4.
37 Haynes H, Bassuoni M T. Concrete International, 2011, 33(11), 38.
38 Liu Z Q, Deng D H, Schutter G. Construction & Building Materials, 2014, 66, 692.
39 Lee B Y, Kurtis K E. Cement & Concrete Research, 2017, 98, 61.
40 Scherer G W. Cement & Concrete Research. 2004, 34(9), 1613.
[1] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[2] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[3] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[4] 孙道胜, 叶哲, 刘开伟, 王爱国, 管艳梅, 陈东. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067.
[5] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[6] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[7] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[8] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[9] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[10] 任国宏, 廖洪强, 高宏宇, 闫志华, 程芳琴. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.
[11] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[12] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[13] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[14] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[15] 孙道胜, 程星星, 刘开伟, 王爱国, 张高展. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状[J]. 材料导报, 2018, 32(23): 4135-4141.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed