Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14087-14092    https://doi.org/10.11896/cldb.19070200
  无机非金属及其复合材料 |
膨润土改性砂土工程性质及其在盾构施工中的应用
梅源1, 2, 田新宇1, 2, 胡长明1, 2, 刘建国3, 杨云飞3, 朱军3
1 西安建筑科技大学土木工程学院, 西安 710055
2 陕西省岩土与地下空间工程重点实验室, 西安 710055
3 中国中铁七局集团第三工程有限公司, 西安 710021
Engineering Properties of Bentonite Modified Sand and Its Application in Shield Construction
MEI Yuan1, 2, TIAN Xinyu1, 2, HU Changming1, 2, LIU Jianguo3, YANG Yunfei3, ZHU Jun3
1 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(XAUAT), Xi'an 710055, China
3 China Railway Seventh Bureau Group Third Engineering Co., Ltd, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 6522KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 砂性土因黏聚力小、摩擦力大、结构松散等性质常造成诸多工程风险,在盾构施工中一般采用改良剂对砂性土进行处理,但由于对改性砂土的工程性质认识不足,仍存在刀具磨损大、压力舱堵塞、出土不畅等问题。为了研究膨润土泥浆改良富水砂层过程中土体渗透系数、抗剪强度、塌落度等指标的变化规律,对富水砂层土体开展了膨润土泥浆配合比试验、膨润土泥浆改良土体试验及掺合料增效试验,并结合典型工程应用验证了试验结果的可靠性。研究表明:(1)相同质量分数下钠基膨润土泥浆粘度和密度优于钙基膨润土,当膨润土泥浆质量分数大于11.0%时,泥浆粘度随膨化时间延长而显著增大,膨润土泥浆最优膨化时间为16~18 h;(2)土体渗透系数随泥浆注入比的增大呈非线性减小的变化趋势,土体内摩擦角、黏聚力及塌落度与泥浆注入比呈线性关系,其中改良砾砂的内摩擦角和黏聚力对泥浆注入比变化最为敏感;(3)膨润土泥浆膨化过程中掺入纤维素钠能改善泥浆性能,在砂土改良过程中掺入Q3黄土能显著提高土体改良效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梅源
田新宇
胡长明
刘建国
杨云飞
朱军
关键词:  土压平衡盾构  富水砂层  土体改良试验  膨润土泥浆  现场掘进    
Abstract: Because of the characteristics of sand soil, such as small cohesion, large friction, loose structure and so on, many engineering risks are often caused. In shield construction, the sand soil is generally treated with conditioner. However, due to the lack of understanding of the enginee-ring properties of the modified sand, there are still large problems in the construction, such as large tool wear, pressure chamber blockage, unearthing and so on. In order to study the change rule of permeability coefficient, shear strength and slump of the soil in the process of improving the water rich sand layer with bentonite slurry, the mix proportion test, the soil improvement test and the efficiency test of the admixture were carried out for the soil in the water rich sand layer, and the reliability of the test results was verified with the typical engineering application. The results show that: (i) The viscosity and specific gravity of the sodium-bentonite mud at the same mass fraction are better than that of the calcium-based bentonite. When the mass fraction of bentonite mud is more than 11.0%, the viscosity of the mud increases significantly with the expansion time, and the optimum expansion time of the bentonite mud is 16—18 h; (ii) The permeability coefficient of soil decreases nonlinearly with the increase of slurry injection ratio, and the friction angle, cohesion and collapse of soil are linearly related to the slurry injection ratio. Among them, the improved internal friction angle and cohesion of gravel sand are most sensitive to the change of slurry injection ratio; (iii) The incorporation of cellulose sodium in the process of bentonite mud expansion can improve the mud performance, and the incorporation of Q3 loess in the sand improvement process can significantly improve the soil improvement effect.
Key words:  earth pressure balance shield    water rich sand layer    soil improvement test    bentonite mud    site excavation
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TU521.1  
基金资助: 国家自然科学基金(51408463);陕西省教育厅专项科研计划项目(17JK0424)
作者简介:  梅源,西安建筑科技大学副教授,2013年6月毕业于西安建筑科技大学岩土工程专业,获工学博士学位,主要从事土木工程施工与管理方向的研究与教学工作。近年来,主持国家自然基金项目1项,省部级科研项目1项,厅局级项目4项,出版专著1部,参编陕西省规范1部,参编施工操作指南一部,在国内外高水平期刊或会议上发表论文30余篇,获准国家专利10余项。
田新宇,西安建筑科技大学硕士研究生,主要从事土木工程施工与岩土力学方向的研究。
引用本文:    
梅源, 田新宇, 胡长明, 刘建国, 杨云飞, 朱军. 膨润土改性砂土工程性质及其在盾构施工中的应用[J]. 材料导报, 2020, 34(14): 14087-14092.
MEI Yuan, TIAN Xinyu, HU Changming, LIU Jianguo, YANG Yunfei, ZHU Jun. Engineering Properties of Bentonite Modified Sand and Its Application in Shield Construction. Materials Reports, 2020, 34(14): 14087-14092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070200  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14087
1 Xiao Chao, Yang Junsheng, Wang Shuying, et al. Journal of Central South University (Science and Technology), 2016, 47(7), 2432(in Chinese).
肖超, 阳军生, 王树英, 等. 中南大学学报(自然科学版), 2016, 47(7), 2432.
2 Jancsecz S, Krause R, Langmaack L. Enviromental & Engineering Geoscience, 2009, 8(3), 167.
3 Sotiris Psomas. Properties of foam/sand mixtures for tunnelling applications. Master's Thesis, University of Oxford, UK, 2001.
4 Li Peinan, Huang Dezhong, Huang Jun, et al. Journal of Tongji University (Natural Science), 2014, 44(1), 59(in Chinese).
李培楠, 黄德中, 黄俊, 等. 同济大学学报(自然科学版), 2014, 44(1), 59.
5 Liu Pengfei, Wang Shuying, Yang Junsheng, et al. Journal of Harbin Institute of Technology, 2018, 50(6), 91(in Chinese).
刘朋飞, 王树英, 阳军生, 等. 哈尔滨工业大学学报, 2018, 50(6), 91.
6 Qiu Yan, Yang Xin'an, Tang Zhuohua, et al. Journal of Tongji University(Natural Science), 2015, 43(11), 1703(in Chinese).
邱龑, 杨新安, 唐卓华, 等. 同济大学学报(自然科学版), 2015, 43(11), 1703.
7 Cheng Chihao, Liao Shaoming, Peng Shaojie, et al. Chinese Journal of Underground Space and Engineering, 2017, 13(1), 190(in Chinese).
程池浩, 廖少明, 彭少杰, 等. 地下空间与工程学报, 2017, 13(1), 190.
8 Raffaele Vinai, Claudio Oggeri, Daniele Peila. Tunnelling & Underground Space Technology, 2008, 23(3), 308.
9 Jiang Houting, Gong Qiuming, Du Xiuli. Chinese Journal of Geotechnical Engineering, 2013, 35(2), 284(in Chinese).
姜厚停, 龚秋明, 杜修力. 岩土工程学报, 2013, 35(2), 284.
10 Peila D, Picchio A, Chieregato A. Tunnelling & Underground Space Technology, 2013, 35(1), 55.
11 Xiao Chao, Yang Junsheng, Chu Dongsheng, et al. Journal of Central South University (Science and Technology), 2015, 46(1), 261(in Chinese).
肖超, 阳军生, 褚东升, 等. 中南大学学报(自然科学版), 2015, 46(1), 261.
[1] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed