Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10061-10067    https://doi.org/10.11896/cldb.19070149
  无机非金属及其复合材料 |
碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能
孙道胜1, 叶哲1, 刘开伟1, 王爱国1, 管艳梅1, 陈东2
1 安徽建筑大学材料与化学工程学院,安徽省先进建筑材料重点实验室,合肥 230022
2 安徽建筑大学土木工程学院,合肥 230022
Consolidation Characteristics and Sulfate Resistance of Alkali-activated Slag Cementitious Materials
SUN Daosheng1, YE Zhe1, LIU Kaiwei1, WANG Aiguo1, GUAN Yanmei1, CHEN Dong2
1 Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
2 School of Civil and Engineering, Anhui Jianzhu University, Hefei 230022, China
下载:  全 文 ( PDF ) ( 7749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发注浆材料作为一种路基、基础加固的环保胶凝材料,其水化产物中不仅没有氢氧化钙,而且部分水化产物还具有吸附硫酸根离子的效果,因而碱激发注浆材料抗硫酸盐侵蚀效果优异,具有广阔的应用前景。本研究对比分析了氧化镁激发矿渣(GGBS-MgO)、氧化钙激发矿渣(GGBS-CaO)与水泥(PC)三种材料固结砂的固结特性及抗硫酸盐侵蚀性能,通过外观、无侧限抗压强度、质量变化率、物相与微结构变化揭示了其抗硫酸盐侵蚀的机理。结果表明:CaO激发可以获得相对更高的pH值,有利于矿渣中玻璃体内O-Si-O、O-Al-O键的断裂,形成更多的水化产物,从而具有更好的固结特性。与水泥固结砂相比,GGBS-MgO、GGBS-CaO固结砂的28 d无侧限抗压强度分别提升了42.2%和101.2%。在5%(质量分数)Na2SO4溶液中浸泡150 d时,PC组中氢氧化钙被消耗形成钙矾石和大量石膏等腐蚀产物,引起试件明显开裂,孔隙率增长82.8%,无侧限抗压强度仅为0.41 MPa;而GGBS-MgO、GGBS-CaO则在硫酸盐的持续激发下继续水化,并能吸附侵入的硫酸根离子形成类水滑石,强度持续增长,抗硫酸盐侵蚀性能明显提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙道胜
叶哲
刘开伟
王爱国
管艳梅
陈东
关键词:  化学固结  碱激发材料  固结砂  硫酸盐侵蚀    
Abstract: As a kind of low-carbon and environment-friendly cementing material for roadbed and foundation reinforcement, alkali-activated geopolymer grouting material not only has no calcium hydroxide in its hydration products, but also some hydration products can provide adsorption of sulfate ions, with excellent anti-sulfate erosion effect and broad application prospect. In this experiment, the consolidation properties and sulfate resistance of magnesia-activated slag (GGBS-MgO), calcium oxide-activated slag (GGBS-CaO) and cement (PC) were studied by appearance, unconfined compressive strength, mass change, the change of mineral composition and microstructure. The results show that slag activated by CaO obtains a higher pH value than MgO activated slag. Higher pH value is beneficial to the fracture of vitreous O-Si-O and O-Al-O bonds in slag, which causes a better consolidation characteristic as more hydration products. The unconfined compressive strength of sand samples stabilized by GGBS-MgO and GGBS-CaO increases 42.2% and 101.2% respectively after curing for 28 d. When the sand samples were immersed in 5wt% Na2SO4 solution for 150 d, sulfate ions react with calcium hydroxide to form ettringite and gypsum in PC, which results in more pores and obvious cracking. After 150 d of immersion, the unconfined compressive strength of PC is decreased to 0.41 MPa while the unconfined compressive strength of GGBS-MgO and GGBS-CaO continuously increases due to the formation of hydrotalcite. As a result of adsorption of sulfate ions by hydrotalcite, the sulfate resistance of GGBS-MgO and GGBS-CaO is better than PC.
Key words:  chemical stabilization    alkali-activated material    stabilized sand    sulphate attack
                    发布日期:  2020-04-26
ZTFLH:  TU528  
基金资助: 安徽省自然科学基金(1708085QE102;190808ME173);国家科技支撑计划(2016YFC0701700);国家自然科学基金(51578004;51608004;51778003)
通讯作者:  孙道胜,安徽建筑大学硕士研究生导师,受聘兼任中国科学院合肥物质科学研究院博士研究生导师。1986年本科毕业于重庆大学建筑材料及制品专业,获工学学士;2004年研究生毕业于南京工业大学材料学专业,获工学博士;2005年获聘教授。安徽省硅酸盐学会常务理事,安徽省水泥标准化技术委员会常务理事,安徽省水泥协会常务理事。主要从事高性能混凝土、固体废弃物的综合利用和先进建筑材料等方面的研究工作。sundaosheng@163.com   
引用本文:    
孙道胜, 叶哲, 刘开伟, 王爱国, 管艳梅, 陈东. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067.
SUN Daosheng, YE Zhe, LIU Kaiwei, WANG Aiguo, GUAN Yanmei, CHEN Dong. Consolidation Characteristics and Sulfate Resistance of Alkali-activated Slag Cementitious Materials. Materials Reports, 2020, 34(10): 10061-10067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070149  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10061
1 Zhou Y X, Yan P Y. Journal of Railway Science and Engineering, 2006, 3(4), 35(in Chinese).
周永祥, 阎培渝. 铁道科学与工程学报, 2006, 3(4), 35.
2 Mi J F, Wang H, Liu J B, et al. Materials Review, 2017, 31(S1), 388(in Chinese).
米吉福, 汪浩, 刘晶冰, 等. 材料导报, 2017, 31(专辑29), 388.
3 Li C, Zhou H Q, Song Q H, et al. Journal of Chongqing University of Technology, 2018,32(10), 116(in Chinese).
李灿,周海清,宋强辉,等. 重庆理工大学学报, 2018,32(10), 116.
4 Geng Y B, Wang Z, Shen L, et al. Journal of Cleaner Production, 2019, 217, 503.
5 Acevedo-Martinez E, Gomez-Zamorano L Y, Escalante-Garcia J I. Construction and Building Materials, 2012, 37, 462.
6 Yu B W, Du Y J, Liu C Y, et al. Rock and Soil Mechanics, 2015, 36(Suup.), 64(in Chinese).
于博伟, 杜延军, 刘辰阳, 等. 岩土力学, 2015, 36(增刊), 64.
7 Yi Y L, Qing X W, Zhuang Y, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(S2), 829(in Chinese).
易耀林, 卿学文, 庄焱, 等. 岩土工程学报, 2013, 35(S2),829.
8 Ghadir P, Ranjbar N. Construction and Building Materials, 2018, 188, 361.
9 Alam S, Das S K, Rao B H. Construction and Building Materials, 2019, 211, 932.
10 Zheng J R, Sun X X, Guo L J, et al. Construction and Building Mate-rials, 2019, 203, 111.
11 Tasong W A, Wild S, Tilley R J D. Cement and Concrete Research, 1999, 29(7), 975.
12 Wild S, Kinuthia J M, Jones G I, et al. Engineering Geology, 1998, 51(1), 37.
13 Cheng Y, Yu H, Zhu B L, et al. Journal of Zhejiang University-Science A(Applied Physics and Engineering), 2016, 17(5), 389.
14 American Society of Testing Materials. ASTM D4972-01 Standard Test Method for pH of soils. Philadelphia, United States, 2001.
15 Duxson P, Ferna′ndez-Jime′nez A, Provis J L, et al. Journal of Materials Science, 2007, 42, 2917.
16 Jin F, Gu K, Al-tabbaa A. Cement and Concrete Composites, 2015, 57, 8.
17 Wu D H, Wu Y G, Lin R. Petroleum Drilling Techniques, 1997, 25(1), 31(in Chinese).
吴达华, 吴永革, 林蓉. 石油钻探技术, 1997, 25(1), 31.
18 Ben Haha M, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2011, 41(9), 955.
19 Song S, Sohn D, Jennings H M, et al. Journal of Materials Science, 2000, 35(1), 249.
20 Gu K, Jin F, Al-tabbaa A, et al. Construction and Building Materials, 2014, 69, 101.
21 Liu Songyu, Zheng Xu, Cai Guanghua, et al. Rock and Soil Mechanics, 2016, 37(11), 3057(in Chinese).
刘松玉, 郑旭, 蔡光华, 等. 岩土力学, 2016, 37(11), 3057.
22 Kayali O, Khan M S H, Sharfuddin Ahmed M. Cement and Concrete Composites, 2012, 34(8), 936.
23 Ni Z M, Pan G X, Wang L G, et al. Chinese Journal of Chemical Phy-sics, 2006, 19(3), 277.
24 Theiss F L, Palmer S J, Ayoko G A, et al. Journal of Thermal Analysis & Calorimetry, 2012, 107(3), 1123.
25 Tsujimura A, Uchida M, Okuwaki A. Journal of Hazardous Materials, 2007, 143(1-2), 582.
26 Rashad A M, Bai Y, Basheer P A M, et al. Cement and Concrete Composites, 2013, 37, 20.
27 Kumar M P, Monteiro J M. Concrete microstructure properties and materials, McGraw-Hill Professional, 2013.
28 Yu C, Sun W, Karen S. Cement and Concrete Research, 2013, 43, 105.
29 Liu K W,Wang A G,Sun D S, et al. Bulletin of the Chinese Ceramic Society, 2016, 34(12), 4014(in Chinese).
刘开伟,王爱国,孙道胜, 等. 硅酸盐通报, 2016, 34(12), 4014.
[1] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[2] 孙道胜, 程星星, 刘开伟, 王爱国, 张高展. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状[J]. 材料导报, 2018, 32(23): 4135-4141.
[3] 潘慧敏,付军,赵庆新. 硬化期受扰动混凝土的抗硫酸盐侵蚀性能[J]. 《材料导报》期刊社, 2018, 32(2): 282-287.
[4] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[5] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[6] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed