Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 282-287    https://doi.org/10.11896/j.issn.1005-023X.2018.02.025
  物理   材料研究 |材料 |
硬化期受扰动混凝土的抗硫酸盐侵蚀性能
潘慧敏,付军,赵庆新
燕山大学河北省重型装备与大型结构力学可靠性重点实验室,秦皇岛 066004
Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage
Huimin PAN,Jun FU,Qingxin ZHAO
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004
下载:  全 文 ( PDF ) ( 3133KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

凝结硬化期间的施工扰动,可能使混凝土产生砂浆微裂缝与骨料位移,进而影响其强度及耐久性。为分析硬化期扰动对混凝土抗硫酸盐侵蚀性能的影响,采用振动台模拟工程扰动,借助超声波和扫描电子显微镜(SEM)等测试手段,系统研究了硬化期受扰混凝土抗硫酸盐侵蚀的劣化规律,探讨了其损伤劣化机理。结果表明:临近初凝(贯入阻力值为3.511.5 MPa)和临近终凝(贯入阻力值为19.528.0 MPa)的扰动对混凝土影响较小,受侵蚀后试件质量和相对动弹模量的变化规律与未受扰混凝土基本一致。硬化中期(贯入阻力值为11.5~19.5 MPa)的扰动对混凝土性能影响明显,使混凝土抗压强度降低14%,抗折强度降低20%;硫酸盐腐蚀进程中,混凝土质量在90次循环后开始出现明显下降,相对动弹模量在130次循环后出现急剧下降,经250次循环后达到0.60,此时基准混凝土的相对动弹模量仍为0.90;SEM结果表明,受扰混凝土内部微裂纹增多,结构密实性变差,硬化期扰动加速了混凝土在硫酸盐侵蚀环境下的劣化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘慧敏
付军
赵庆新
关键词:  混凝土  扰动  硫酸盐侵蚀  干湿循环  相对动弹模量    
Abstract: 

The disturbance during hardening will cause mortar cracks and aggregate displacement, which can affect the later strength and durability. Using shaking table to simulate engineering disturbance, the deterioration rule of early disturbed concrete under dry wet cycle was investigated systematically by means of ultrasonic and scanning electron microscopy in order to analyze the effect of the disturbance of hardening period on the sulfate resistance of concrete. The mechanism of concrete damage deterioration was discussed. Results show that the disturbance closer to initial setting (the penetration resistance is 3.5 MPa to 11.5 MPa) and final setting (the penetration resistance is 19.5 MPa to 28.0 MPa) has smaller effect on concrete. The change rule of weight and relative dynamic elastic modulus is consistent with that of the non-disturbed concrete. The disturbance of hardening medium (the penetration resistance is 11.5 MPa to 19.5 MPa) has obvious influence on concrete. The compressive strength loss reaches above 14% and the flexural strength loss is more than 20%; in the course of corrosion, the weight of concrete decreases obviously after 90 cycles. The relative dynamic modulus decreases sharply after 130 cycle, and reaches 0.60 after the 250 cycle. The relative dynamic modulus of the concrete is still about 0.90. The results of SEM show that the internal micro cracks of the disturbed concrete increase and the structural compactness becomes worse, and the disturbance accelerates the deterioration of concrete under sulfate attack.

Key words:  concrete    disturbance    sulfate corrosion    dry-wet cycle    relative dynamic elastic modulus
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51608469;51578477)
引用本文:    
潘慧敏,付军,赵庆新. 硬化期受扰动混凝土的抗硫酸盐侵蚀性能[J]. 《材料导报》期刊社, 2018, 32(2): 282-287.
Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage. Materials Reports, 2018, 32(2): 282-287.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.025  或          http://www.mater-rep.com/CN/Y2018/V32/I2/282
图1  硬化期扰动对混凝土28 d强度的影响
图2  受扰混凝土质量变化率随侵蚀循环次数的变化
图3  受扰混凝土相对动弹模量随侵蚀循环次数的变化
图4  混凝土侵蚀250次循环后的典型外观
图5  混凝土侵蚀250 d内部扫描电镜图
1 Thidar Aye, Chiaki T Oguchi . Resistance of plain and blended cement mortars exposed to severe sulfate attacks[J]. Construction and Building Materials, 2011,25(6):2988.
2 Gao Jianming, Yu Zhenxin, Song Luguang , et al. Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles[J]. Construction and Building Materials, 2013,39:33.
3 Gao Rundong, Li Qingbin, Zhao Shunbo . Concrete deterioration mechanisms under combined sulfate attack and flexural loading[J]. Journal of Materials in Civil Engineering, 2013,25(1):39.
4 Zhao Li, Liu Juanhong, Zhou Weijin , et al. Damage evolution and mechanism of concrete erosion at sulfate environment in underground mine[J]. Journal of China Coal Society, 2016,41(6):1422(in Chinese).
5 赵力, 刘娟红, 周卫金 , 等. 矿井环境中混凝土材料腐蚀损伤演化与机理分析[J]. 煤炭学报, 2016,41(6):1422.
6 Liang Yongning, Yuan Yingshu . Mechanism of concrete destruction under sodium sulfate an magnesium sulfate solution[J]. Journal of the Chinese Ceramic Society, 2007,35(4):504 (in Chinese).
7 梁咏宁, 袁迎曙 . 硫酸钠和硫酸镁溶液中混凝土腐蚀破坏机理[J]. 硅酸盐学报, 2007,35(4):504.
8 Yu Zhenxin, Gao Jianming, Song Luguang , et al. Damage process of concrete exposed to sulfate attack under drying-wetting cycles and loading[J]. Journal of Southeast University (Natural Science Edition), 2012,42(3):487(in Chinese).
9 余振新, 高建明, 宋鲁光 , 等. 荷载-干湿交替-硫酸盐耦合作用下混凝土损伤过程[J]. 东南大学学报(自然科学版), 2012,42(3):487.
10 Yuan Lidong, Niu Ditao, Jiang Lei , et al. Study on damage of concrete under the combined action of sulfate attack and freeze-thaw cycle[J]. Bulletin of the Chinese Ceramic Society, 2013,32(6):1171(in Chinese).
11 苑立冬, 牛荻涛, 姜磊 , 等. 硫酸盐侵蚀与冻融循环共同作用下混凝土损伤研究[J]. 硅酸盐通报, 2013,32(6):1171.
12 Huang Qian, Wang Chong . Deterioration and its mechanism of concrete under combined action of electrical field and sulfate attack[J]. Journal of the Chinese Ceramic Society, 2016,44(2):239(in Chinese).
13 黄谦, 王冲 . 电场与硫酸盐侵蚀共同作用下混凝土的劣化及其机理[J]. 硅酸盐学报. 2016,44(2):239.
14 Leemann R, Loser R . Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years[J]. Cement and Concrete Composites, 2011,33(1):74.
15 Pan Huimin, Zhao Qingxin, Fu Jun . Development on performance of early age concrete under disturbance[J]. Bulletin of the Chinese Ceramic Society, 2017,36(1):64(in Chinese).
16 潘慧敏, 赵庆新, 付军 . 早龄期混凝土受扰性能研究进展[J]. 硅酸盐通报, 2017,36(1):64.
17 Li Shibin, Sun Wei . Review on deterioration of concrete subjected to coupling effect of fatigue load, carbonation and chlorides[J]. Journal of the Chinese Ceramic Society, 2013,41(11):1459(in Chinese).
18 李士彬, 孙伟 . 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013,41(11):1459.
19 Zhang Yongjuan, Zhang Yueran, Zhang Xiong . Three techniques to improve disturbance resistance of concrete[J]. Journal of Building Materials, 2011,14(1):26(in Chinese).
20 张永娟, 张悦然, 张雄 . 改善混凝土抗扰动性能的三种途径[J]. 建筑材料学报, 2011,14(1):26.
21 Jiang Zhengwu, Ren Qiang, Yuan Zhengcheng . Effects of vehicle-bridge coupled vibration on early-age properties of concrete and its damage mechanism[J]. Journal of Building Materials, 2015,18(3):471(in Chinese).
22 蒋正武, 任强, 袁政成 . 车桥耦合振动对混凝土早期性能的影响及其损伤机理[J]. 建筑材料学报, 2015,18(3):471.
23 Pan Huimin, Wang Fengxian, Zhao Qingxin . Influence of distur-bance in hardening stage on mechanical properties of concrete[J]. Journal of Building Materials, 2016,19(4):631(in Chinese).
24 潘慧敏, 王奉献, 赵庆新 . 硬化期扰动对混凝土力学性能的影响[J]. 建筑材料学报, 2016,19(4):631.
25 Wei Jianjun, Xing Jiaoxiu, Fu Zhi . Effect of traffic load induced bridge vibrations on concrete tensile properties[J]. Journal of Sout-heast University (Natural Science Edition), 2010,40(5):1057(in Chinese).
26 魏建军, 邢姣秀, 付智 . 行车荷载引起桥梁振动对修复混凝土性能影响[J]. 东南大学学报(自然科学版), 2010,40(5):1057.
27 16 Kwan A K H, Ng P L . Effect of vibration on curing concrete stitch: Part Ⅱ-cracking, deboning and strength reduction[J]. Engineering Structures, 2007,29(11):2881.
28 Dai Miaoxian, Yang Junjie, Ying Yimiao , et al. Experimental study on bond force of early-age reinforced concrete under aftershock[J]. Building Structrue, 2011,41(3):75(in Chinese).
29 戴妙娴, 杨俊杰, 应义淼 , 等. 余震作用下早龄期钢筋混凝土握裹力试验[J]. 建筑结构, 2011,41(3):75.
30 Ying Yimiao, Yang Junjie, Chen Xiong , et al. Cracks and internal damage analysis of early-age concrete columns under aftershock[J]. Building Structrue, 2011,41(3):72(in Chinese).
31 应义淼, 杨俊杰, 陈雄 , 等. 余震作用下早龄期混凝土柱裂缝及内部损失分析[J]. 建筑结构, 2011,41(3):72.
32 Wang Shanshan, Qiu Ling, Wang Jingrong , et al. Study of concrete dynamic failure process based on supersonic detection[J]. Journal of Experimental Mechanics, 2011,26(3):311(in Chinese).
33 王山山, 邱玲, 王京荣 , 等. 混凝土动态破坏过程超声波测试研究[J]. 实验力学, 2011,26(3):311.
34 Zhao Qingxin, Li Donghua, Yan Guoliang , et al. Corrosion resis-tance of damaged concrete exposed to sulphate attack[J]. Journal of the Chinese Ceramic Society, 2012,40(2):217(in Chinese).
35 赵庆新, 李东华, 闫国亮 , 等. 受损混凝土抗硫酸盐腐蚀性能[J]. 硅酸盐学报, 2012,40(2):217.
36 Hou Dongwei, Zhang Jun, Sun Wei , et al. Determination of concrete setting time based on measurements of deformation[J]. Journal of the Chinese Ceramic Society, 2009,37(7):1079(in Chinese).
37 侯东伟, 张君, 孙伟 , 等. 基于早期变形特征的混凝土凝结时间的确定[J]. 硅酸盐学报, 2009,37(7):1079.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[9] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[10] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[11] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[12] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[13] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[14] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[15] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed