Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10068-10075    https://doi.org/10.11896/cldb.19040164
  无机非金属及其复合材料 |
动静态成型条件下预裂水稳碎石的力学特性
段开瑞1, 高英力1, 周文娟1, 裴甘鹏1, 何倍2
1 长沙理工大学交通运输工程学院,长沙 410114
2 同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Mechanical Properties of Pre-cracked Cement-stabilized Crushed Stone Molded by Dynamic and Static Methods
DUAN Kairui1, GAO Yingli1, ZHOU Wenjuan1, PEI Ganpeng1, HE Bei2
1 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 9911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用静压与振动压实两种方式制备骨架密实型水稳碎石试件,在养护初期对其实施预裂。研究了不同成型方式下,经早期预裂处理后水稳碎石的预裂程度发展规律、力学、干缩和抗裂性能。结果表明:试件预裂程度在振动作用下先增大后减小,在达到最大预裂程度前,静压试件预裂程度高于振动试件;在相同预裂参数下,振动试件自愈性能优于静压试件,静压试件的抗拉强度指标表现最差;预裂处理后最大可分别降低振动和静压试件35.8%和35.3%的干缩应变;试件经预裂处理后抗裂性能提升2~3倍;试件振动成型更易形成“水泥-粗集料-细集料”的稳定结构和理想的预裂纹;最佳预裂参数为振动成型,预裂时间2 d,预裂程度30%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段开瑞
高英力
周文娟
裴甘鹏
何倍
关键词:  水稳碎石  成型条件  预裂  力学特性    
Abstract: Skeleton dense cement-stabilized crushed stone was prepared by static pressing (SP) and vibration compaction (VC), respectively, and then the vibration machine was used to crack them at the early curing stage. The development of the pre-cracking degree, mechanical, dry shrinkage and crack resistance performance of specimens were studied. The results showed that pre-cracking degree increased firstly then decreased with the increase of vibration time and the pre-cracking degree of SP specimen was higher than that of the VC specimen; self-healing ability of the VC specimen was better than that of the SP specimen and the indirect tensile strength recovery of SP specimen was the worst; after the pre-cracking treatment, dry shrinkage strain of VC and SP specimen was reduced by at most 35.8% and 35.3%, respectively; the crack resistance of specimens was improved by nearly 2—3 times through the treatment of pre-cracking. It was easier to form the stable structure of “cement-coarse aggregate-fine aggregate” and ideal pre-cracks for VC specimen. Thus, the optimal parameters are: vibration forming, pre-cracking time of 2 d, pre-cracking degree of 30%.
Key words:  cement-stabilized crushed stone    forming methods    pre-cracked    mechanical properties
                    发布日期:  2020-04-26
ZTFLH:  TU502  
基金资助: 国家自然科学基金委员会与中国民用航空局联合资助项目(U1833127);湖南省自然科学基金项目(2018JJ4016);湖南省教育厅科学研究重点项目(18A129)
通讯作者:  高英力,博士(后),硕士研究生导师,长沙理工大学交通运输工程学院教授,副院长,公开发表学术论文100余篇,其中50余篇被SCI、EI和 ISTP检索。研究方向主要为道路新材料和高性能功能路面材料。yingligao509@126.com   
作者简介:  段开瑞,长沙理工大学交通运输工程学院硕士研究生,研究方向为水泥混凝土材料。
引用本文:    
段开瑞, 高英力, 周文娟, 裴甘鹏, 何倍. 动静态成型条件下预裂水稳碎石的力学特性[J]. 材料导报, 2020, 34(10): 10068-10075.
DUAN Kairui, GAO Yingli, ZHOU Wenjuan, PEI Ganpeng, HE Bei. Mechanical Properties of Pre-cracked Cement-stabilized Crushed Stone Molded by Dynamic and Static Methods. Materials Reports, 2020, 34(10): 10068-10075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040164  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10068
1 Zang G, Sun L, Chen Z, et al. Construction & Building Materials, 2018, 162, 892.
2 Yang Y, Zheng J, Lv S. Frattura Ed Integrità Strutturale, 2017, 41, 339.
3 Wang X Y, Li K, Zhong Y, et al. Construction & Building Materials, 2018, 189, 1035.
4 Nejad F M, Noory A, Toolabi S, et al. International Journal of Pavement Engineering, 2015, 16(6), 477.
5 Zhang Q, Wu D, He W, et al. Journal of Central South University, 2016,47(1), 136.
6 Zhang J, Dai L, Zheng J, et al. Journal of Testing and Evaluation, 2016, 44(2), 838.
7 Wang Z K, Lin Y P. Journal of Highway and Transportation Research and Development, 2017 (2), 48(in Chinese).
王周凯, 林育萍. 公路交通科技(应用技术版), 2017 (2), 48.
8 Xue Y, Qian Z, Jia W. Journal of Southeast University (Natural Science Edition), 2016, 32 (1), 93.
9 Zhang H W, Hao P W, Jiang Z, et al. Engineering Journal of Wuhan University, 2016, 49 (4), 559(in Chinese).
张海伟, 郝培文, 江洲, 等. 武汉大学学报(工学版), 2016, 49 (4), 559.
10 Litzka J, Haslehner W. In: Proceedings of the Sixth International Confe-rence on Low-Volume Roads Minneapolis. Minnesota, America, 1995, pp. 189.
11 Scullion T. In: Proceeding of the 81st Annual Meeting of the Transportation-Research-Board. Washington, D.C, 2002, pp. 22.
12 Sebesta S. In: Proceeding of the 84th Annual Meeting of the Transportation-Research-Board Washington. DC, America, 2005, pp. 3.
13 Mitichekettab R, Boulanouar A, Bali A. In: 7th RILEM International Conference on Cracking in Pavements. Springer Netherlands, 2012, pp. 21.
14 Zhang J, Wei L Y, Wang T. Bulletin of the Chinese Ceramic Society, 2016, 35 (10),3404(in Chinese).
张静, 魏连雨, 王涛, 等. 硅酸盐通报, 2016, 35 (10), 3404.
15 Zhang J, Wei L Y, Wang T, et al. Bulletin of the Chinese Ceramic Society, 2016, 35 (11), 3865(in Chinese).
张静, 魏连雨, 王涛, 等. 硅酸盐通报, 2016, 35 (11), 3865.
16 Hao G J, Tian B, Hou R G. Journal of Highway and Transportation Research and Development, 2016, 33 (8), 51(in Chinese).
郝冠军, 田波, 侯荣国. 公路交通科技, 2016, 33 (8), 51.
17 Yilmaz Y, Cetin B, Kahnemouei V B. Geomechanics and Engineering, 2017, 12 (6), 935.
18 Ji X, Jiang J, Liu Y. Materials and Structures, 2016, 49 (6), 2257.
[1] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[2] 薛秀丽, 曾超峰, 王世斌, 何巍. 软物质力学:行为特性、理论模型和测试方法[J]. 材料导报, 2018, 32(15): 2693-2700.
[3] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed