Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2693-2700    https://doi.org/10.11896/j.issn.1005-023X.2018.15.022
  高分子与聚合物基复合材料 |
软物质力学:行为特性、理论模型和测试方法
薛秀丽1, 曾超峰1, 王世斌2, 何巍2
1 湖南科技大学土木工程学院,湘潭 411201;
2 天津大学力学系,天津 300072
Soft Matter Mechanics: Behavioral Characteristics, Theoretical Models and Test Methods
XUE Xiuli1, ZENG Chaofeng1, WANG Shibin2, HE Wei2
1 School of Civil Engineering, Hunan University of Science & Technology, Xiangtan 411201;
2 Department of Mechanics, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 2030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 软物质已成为物理学、化学、材料、力学和生命科学重要的前沿研究课题,在技术和生产上有广阔的应用前景,是国际上普遍重视的多学科交叉研究领域,更是通向研究生命体系的桥梁。软物质力学是力学的一个新兴方向,其研究对推动多学科的交集协同发展有着极其重要的作用。
然而,软物质组成复杂,常是多相集合体,且往往涉及与硬物质的界面相互作用,其运动和变化规律与一般流体和固体迥异。软物质中结构单元之间的作用力弱,在一般流体和固体中作用较小的力,如表、界面作用力、范德华力等,可能在软物质中起到主导作用,传统的流体/固体理论已无法全面刻画软物质所呈现的许多独特现象。软物质的本构关系比较复杂,涉及到流变、大变形、熵等新概念。目前,除了软物质物理、化学、生物等相关研究以外,研究者们开始从力学的角度对软物质的行为特性及其理论分析模型与测试方法进行深入探索,在生物力学、界面和接触力学、胶体力学、实验力学等领域取得了丰硕的成果。
近几年来,学者们对生物组织、细胞和生物大分子、水凝胶、形状记忆聚合物、活性软材料、柔性电子器件、颗粒、液晶等多种软物质体系进行了力学分析、模拟及实验,探索了软物质微结构形成的物理机制和动力学引起的新生长规律。也有学者将软物质的不稳定性和自组装行为用于开发低成本、高性能的新材料和新设备。还有许多学者考虑学科交叉,从新的角度研究软物质材料,将连续介质力学中的本构关系、计算技术和建模方法引入到软物质模拟计算中,实现对软物质的自组装行为及表面不稳定性的理论分析,并将综合的力学测试方法和技术带入到软物质力学实验中,实现对软物质复杂力学响应的小尺度性能测试。
本文论述了软物质材料的力学行为及特性:包括复杂力学响应、自组织行为和表面不稳定性及其相关研究进展;重点讨论了软物质在生物力学、界面和接触力学、胶体力学和实验力学等力学领域的研究发展;对软物质力学的发展前景做了展望,提出了值得进一步研究的方向,以期推动国内软物质力学学科的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛秀丽
曾超峰
王世斌
何巍
关键词:  软物质  力学特性  生物力学  学科交叉    
Abstract: Soft matter has become an important frontier subject in physics, chemistry, materials, mechanics and life science, which is widely applied in industrial production and techniques. As a multi-disciplinary overlapping research area and the bridge to life system, soft matter has attracted extensive attention worldwide. Soft matter mechanics is a new direction of mechanics with rich practical significance and challenges, which plays a very important role to promote the coordinated development of multi-disciplinary intersection.
However, with a complex composition, soft matter generally appears in multi-phase aggregate and has interaction with the interface of hard material, which makes the movement rule of soft matter quite different from ordinary fluid and solid. Owing to the weak interaction between structural unit in soft matter, a small force like surface and interface force, van der Waals force, etc. in ordinary fluid and solids may play a leading role in soft matter. Therefore, the traditional fluid/solid theory cannot fully describe the unique phenomena presented by soft materials. The constitutive relation of soft matter is complex, which involves new concepts like rheology, large deformation and entropy. At present, in addition to studies of soft matter physics, chemistry and biology, the beha-vior characteristics of soft matter and their theoretical analysis model and test methods are explored deeply in view of mechanics. Fruitful results have been achieved in research of soft matter mechanics in biological mechanics, colloid and interface mechanics, contact mechanics, experimental mechanics and other fields.
In recent years, mechanical analysis, simulation and experiments on biological tissues, cells and biological macromolecules, hydrogel, shape memory polymers, soft active materials, flexible electronics, granule, liquid crystal, and other soft material system have been carried out. Physical mechanism of microstructure formation and novel growth law caused by kinetics have been explored. The instability and self-assembly of soft materials are used to develop new materials and equipment with low cost and high perfor-mance. In addition, interdisciplinarity has been considered in the study of soft material from a new point of view. The constitutive relationship, computing and modeling method of continuum mechanics are brought into simulation of soft materials to realize the theoretical analysis of the self-assembly behavior and surface instability of soft materials. Comprehensive mechanical testing methods and techniques are introduced into mechanics experiments of soft materials to realize small scale performance testing of complex mechanical response of soft matter.
This article mainly discuss the mechanical behavior and properties including complex mechanical responses, self-organizing behavior and surface instability and their related research progress of soft matter. Furthermore, the article puts emphasis on the research and development of soft matter in biological mechanics, contact mechanics, colloid interface mechanics and experimental mechanics. On the prospect of soft matter mechanics, further research direction has been proposed to promote the development of domestic soft matter mechanics discipline.
Key words:  soft matter    mechanics property    biological mechanics    interdisciplinary
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  O369  
基金资助: 国家自然科学基金(11602083;51708206);湖南省自然科学基金(2016JJ6044)
作者简介:  薛秀丽:女,1986年生,讲师,硕士研究生导师,主要研究方向为智能材料力学性能和实验测试 E-mail:xlxue@hnust.edu.cn
引用本文:    
薛秀丽, 曾超峰, 王世斌, 何巍. 软物质力学:行为特性、理论模型和测试方法[J]. 材料导报, 2018, 32(15): 2693-2700.
XUE Xiuli, ZENG Chaofeng, WANG Shibin, HE Wei. Soft Matter Mechanics: Behavioral Characteristics, Theoretical Models and Test Methods. Materials Reports, 2018, 32(15): 2693-2700.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.022  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2693
1 Zeng X, Li S, Ren B. Soft matter modeling of biological cells[M].Springer Berlin Heidelberg. Berlin, Heidelberg,2012:95.
2 Gennes de P G. Soft matter (Nobel lecture)[J].Angewandte Chemie International Edition in English,1992,31(7):842.
3 Liu X Y, Yu S H. Soft matter: From structure to functionality[J].Small,2015,11(9-10):1022.
4 Kempaiah R, Nie Z. From nature to synthetic systems: Shape transformation in soft materials[J].Journal of Materials Chemistry B,2014,2(17):2357.
5 Glatz B A, Tebbe M, Kaoui B, et al. Hierarchical line-defect patterns in wrinkled surfaces[J].Soft Matter,2015,11(17):3332.
6 Wu G, Cho Y, Choi I S, et al. Directing the deformation paths of soft metamaterials with prescribed asymmetric units[J].Advanced Materials,2015,27(17):2747.
7 Du Q, Guan Y, Zhu X, et al. Swelling-induced surface instability patterns guided by pre-introduced structures[J].Soft Matter,2015,11(10):1937.
8 Glotzer S C. Editorial: Soft matters[J].Physical Review Letters,2015,114(5):050001.
9 Whitesides G M, Grzybowski B. Self-assembly at all scales[J].Science,2002,295(5564):2418.
10 Yu X, Chen L, Zhang M, et al. Low-molecular-mass gels responding to ultrasound and mechanical stress: Towards self-healing materials[J].Chemical Society Reviews,2014,43(15):5346.
11 Ma Y Q. Self organization in soft matter[J].Progress in Physics,2002,22(1):73(in Chinese).
马余强.软物质的自组织[J].物理学进展,2002,22(1):73.
12 Raeburn J, Cardoso A Z, Adams D J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels[J].Chemical Society Reviews,2013,42(12):5143.
13 Silver F H, Freeman J W, Seehra G P. Collagen self-assembly and the development of tendon mechanical properties[J].Journal of Biomechanics,2003,36(10):1529.
14 Pins G D, Christiansen D L, Patel R, et al. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties[J].Biophysical Journal,1997,73(4):2164.
15 Yin J, Chen X, Sheinman I. Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems[J].Journal of the Mechanics and Physics of Solids,2009,57(9):1470.
16 Yin J, Gerling G J, Chen X. Mechanical modeling of a wrinkled fingertip immersed in water[J].Acta Biomaterialia,2010,6(4):1487.
17 Yin J, Bar-Kochba E, Chen X. Mechanical self-assembly fabrication of gears[J].Soft Matter,2009,5(18):3469.
18 Mukherjee R, Sharma A. Instability, self-organization and pattern formation in thin soft films[J].Soft Matter,2015,11(45):8717.
19 Cai S, Chen D, Suo Z, et al. Creasing instability of elastomer films[J].Soft Matter,2012,8(5):1301.
20 Yang S, Khare K, Lin P C. Harnessing surface wrinkle patterns in soft matter[J].Advanced Functional Materials,2010,20(16):2550.
21 Guvendiren M. Reaction-diffusion dynamics induced surface instabilities[M].Springer International Publishing. Cham,2015:201.
22 Lintingre é, Ducouret G, Lequeux F, et al. Controlling the buckling instability of drying droplets of suspensions through colloidal interactions[J].Soft Matter,2015,11(18):3660.
23 Huang S Q, Li B, Feng X Q. Three-dimensional analysis of spontaneous surface instability and pattern formation of thin soft films[J].Journal of Applied Physics,2008,103(8):083501.
24 Cao Y P, Zheng X P, Li B, et al. Determination of the elastic modulus of micro- and nanowires/tubes using a buckling-based metrology[J].Scripta Materialia,2009,61(11):1044.
25 Li B, Cao Y P, Feng X Q. Growth and surface folding of esophageal mucosa: A biomechanical model[J].Journal of Biomechanics,2011,44(1):182.
26 Genzer J, Groenewold J. Soft matter with hard skin: From skin wrinkles to templating and material characterization[J].Soft Matter,2006,2(4):310.
27 Li B. Research of surface instability of soft materials[J]. Chinese Journal of Solid Mechanics,2012,33(1):119(in Chinese).
李博.软物质材料的表面失稳研究[J].固体力学学报,2012,33(1):119.
28 Cao Y P, Li B, Feng X Q. Surface wrinkling and folding of core-shell soft cylinders[J].Soft Matter,2012,8(2):556.
29 Li B, Cao Y P, Feng X Q, et al. Mechanics of morphological instabilities and surface wrinkling in soft materials: A review[J].Soft Matter,2012,8(21):5728.
30 Auguste A, Jin L, Suo Z, et al. Post-wrinkle bifurcations in elastic bilayers with modest contrast in modulus[J].Extreme Mechanics Letters,2017,11:30.
31 Tang S, Li Y, Yang Y, et al. The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids[J].Soft Matter,2015,11(40):7911.
32 Budday S, Kuhl E, Hutchinson J W. Period-doubling and period-tripling in growing bilayered systems[J].Philosophical Magazine,2015,95(28-30):3208.
33 Chatterjee S, McDonald C, Niu J, et al. Wrinkling and folding of thin films by viscous stress[J].Soft Matter,2015,11(9):1814.
34 Shin H, Dixit A C, Stone H A, et al. The dynamics of interacting folds under biaxial compressive stresses[J].Soft Matter,2016,12(15):3502.
35 Budday S, Andres S, Walter B, et al. Wrinkling instabilities in soft bilayered systems[J].Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2017,375:2093.
36 Chen E H, Yang J H, Li D, et al. On the theoretical basis of ratio-nal continuummechanics in softmatter[J].Acta Physica Sinica,2016,65(18):188103(in Chinese).
陈恩惠,杨锦鸿,李栋,等.软物质中的理性连续介质力学基础[J].物理学报,2016,65(18):188103.
37 Chen J S, Lee C H, Teng H, et al. Atomistic to continuum mode-ling of DNA molecules[M].Springer Berlin Heidelberg. Berlin, Heidelberg,2012:1.
38 Bustamante C, Bryant Z, Smith S B. Ten years of tension: Single-molecule DNA mechanics[J].Nature,2003,421(6921):423.
39 Bryant Z, Oberstrass F C, Basu A. Recent developments in single-molecule DNA mechanics[J].Current Opinion in Structural Biology,2012,22(3):304.
40 Smith S B, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads[J].Science,1992,258(5085):1122.
41 Perkins T T, Smith D E, Larson R G, et al. Stretching of a single tethered polymer in a uniform flow[J].Science,1995,268(5207):83.
42 Cluzel P, Lebrun A, Heller C, et al. DNA: An extensible molecule[J].Science,1996,271(5250):792.
43 Hauke C S, Rief M, Tolksdorf C, et al. Mechanical stability of single DNA molecules[J].Biophysical Journal,2000,78(4):1997.
44 Smith S B, Cui Y, Bustamente C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules[J].Science,1996,271(5250):795.
45 Tesoro S, Ali I, Morozov A N, et al. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA[J].Physical Biology,2016,13(1):016004.
46 Glowacki J. Computation and visualization in multiscale modelling of DNA mechanics[D].École Dolytechnique Fédérale de Lausanne. Lausanne, Switzerland,2016.
47 Chen J S, Teng H, Nakano A. Wavelet-based multi-scale coarse graining approach for DNA molecules[J].Finite Elements in Analysis and Design,2007,43(5):346.
48 Petka W A, Harden J L, McGrath K P, et al. Reversible hydrogels from self-assembling artificial proteins[J].Science,1998,281(5375):389.
49 Sara F L, Kim H S, Choi E C, et al. Antibacterial agents based on the cyclic d,l-[alpha]-peptide architecture[J].Nature,2001,412(6845):452.
50 Marini D M, Hwang W, Lauffenburger D A, et al. Left-handed helical ribbon intermediates in the self-assembly of a β-sheet peptide[J].Nano Letters,2002,2(4):295.
51 Zhang S, Marini D M, Hwang W, et al. Design of nanostructured biological materials through self-assembly of peptides and proteins[J].Current Opinion in Chemical Biology,2002,6(6):865.
52 Li J, Han D, Zhao Y P. Kinetic behaviour of the cells touching substrate: The interfacial stiffness guides cell spreading[J].Scientific Reports,2014,4:3910.
53 Freund L B, Lin Y. The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion[J].Journal of the Mechanics and Physics of Solids,2004,52(11):2455.
54 Ni Y, Chiang M Y M. Cell morphology and migration linked to substrate rigidity[J].Soft Matter,2007,3(10):1285.
55 Deshpande V S, Mrksich M, McMeeking R M, et al. A bio-mecha-nical model for coupling cell contractility with focal adhesion formation[J].Journal of the Mechanics and Physics of Solids,2008,56(4):1484.
56 Liu P, Zhang Y W, Cheng Q H, et al. Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand bin-ding[J].Journal of the Mechanics and Physics of Solids,2007,55(6):1166.
57 Roy S, Qi H J. A computational biomimetic study of cell crawling[J].Biomechanics and Modeling in Mechanobiology,2010,9(5):573.
58 Zeng X, Li S. Multiscale modeling and simulation of soft adhesion and contact of stem cells[J].Journal of the Mechanical Behavior of Biomedical Materials,2011,4(2):180.
59 Li J J, Zhao Y P. Research progress on kinetics of cell spreading[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(5):807(in Chinese).
李建军,赵亚溥.细胞铺展动力学的研究进展[J].力学学报,2012,44(5):807.
60 Jensen M H, Morris E J, Weitz D A. Mechanics and dynamics of reconstituted cytoskeletal systems[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2015,1853(11):3038.
61 Hatami-Marbini H, Mofrad M R K. Cytoskeletal mechanics and cellular mechanotransduction: A molecular perspective[M].Springer Berlin Heidelberg. Berlin, Heidelberg,2011:3.
62 Sharma A, Licup A J, Jansen K A, et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks[J].Nature Phy-sics,2016,12(6):584.
63 Laursen T A. Computational contact and impact mechanics: Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[M].Springer Science & Business Media,2013.
64 Stadler M, Holzapfel G A, Korelc J. Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems[J].International Journal for Numerical Methods in Enginee-ring,2003,57(15):2177.
65 Fischer K A, Wriggers P. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone[J].Computer Methods in Applied Mechanics and Engineering,2006,195(37-40):5020.
66 Sauer R A, Li S. An atomic interaction-based continuum model for adhesive contact mechanics[J].Finite Elements in Analysis and Design,2007,43(5):384.
67 Hesch C, Betsch P. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems[J].International Journal for Numerical Methods in Engineering,2009,77(10):1468.
68 Sauer R A. Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta[J].Computer Methods in Biomechanics and Biomedical Engineering,2009,12(6):627.
69 Temizer , Wriggers P. Thermal contact conductance characterization via computational contact homogenization: A finite deformation theory framework[J].International Journal for Numerical Methods in Engineering,2010,83(1):27.
70 Luan B, Robbins M O. Contact of single asperities with varying adhesion: Comparing continuum mechanics to atomistic simulations[J].Physical Review E,2006,74(2):026111.
71 Sauer R A, Li S. A contact mechanics model for quasi-continua[J].International Journal for Numerical Methods in Engineering,2007,71(8):931.
72 Andreotti B, Baumchen O, Boulogne F, et al. Solid capillarity: When and how does surface tension deform soft solids?[J].Soft Matter,2016,12(12):2993.
73 Zwieniecki M A, Melcher P J, Michele Holbrook N. Hydrogel control of xylem hydraulic resistance in plants[J].Science,2001,291(5506):1059.
74 Afoke N, Byers P, Hutton W. Contact pressures in the human hip joint[J].Journal of Bone & Joint Surgery, British Volume,1987,69-B(4):536.
75 Gibbs J W. On the equilibrium of heterogeneous substances[J]. American Journal of Science,1878,16(96):441.
76 Flory P J, Jr J R. Statistical mechanics of cross-linked polymer networks Ⅰ. Rubberlike elasticity[J].The Journal of Chemical Physics,1943,11(11):512.
77 Biot M A. General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12(2):155.
78 Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels[J].Journal of the Mechanics and Physics of Solids,2008,56(5):1779.
79 Hong W, Zhao X, Suo Z. Large deformation and electrochemistry of polyelectrolyte gels[J].Journal of the Mechanics and Physics of Solids,2010,58(4):558.
80 Bartsch T F, Kochanczyk M D, Lissek E N, et al. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution[J].Nature Communications,2016,7:12729.
81 Gross W, Kress H. Simultaneous measurement of the Young’s mo-dulus and the Poisson ratio of thin elastic layers[J].Soft Matter,2017,13(5):1048.
82 Yango A, Schape J, Rianna C, et al. Measuring the viscoelastic creep of soft samples by step response AFM[J].Soft Matter,2016,12(40):8297.
83 Vorselen D, MacKintosh F C, Roos W H, et al. Competition between bending and internal pressure governs the mechanics of fluid nanovesicles[J].ACS Nano,2017,11(3):2628.
84 Fan J, Weerheijm J, Sluys L. Dynamic compressive mechanical response of a soft polymer material[J].Materials & Design,2015,79:73.
85 Lv H B, Leng J S, Du S Y. Working mechanism for the mechanical behavior of shape memory polymer[J].Chinese Journal of Solid Mechanics,2017,38(1):1(in Chinese).
吕海宝,冷劲松,杜善义.形状记忆聚合物力学行为及其物理机制[J].固体力学学报,2017,38(1):1.
86 Li K, Gao X L, Roy A K. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s second theorem[J].Composites Science and Technology,2003,63(12):1769.
87 Liu J L. Theoretical analysis on capillary adhesion of microsized plates with a substrate[J].Acta Mechanica Sinica,2010,26(2):217.
88 Zeng C F, Xue X L, Zheng G, et al. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system[J].Journal of Hydrology,2018,559:609.
[1] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed