Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2701-2708    https://doi.org/10.11896/j.issn.1005-023X.2018.15.023
  高分子与聚合物基复合材料 |
化学法改良速生木材研究进展
仇洪波, 韩雁明, 范东斌, 李改云, 储富祥
中国林业科学研究院木材工业研究所, 北京 100091
Progress in Chemical Modification of Fast-Growing Wood
QIU Hongbo, HAN Yanming, FAN Dongbin, LI Gaiyun, CHU Fuxiang
Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091
下载:  全 文 ( PDF ) ( 1695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木材是工业和生活中必不可少的天然材料,我国一直是木材及其制品的生产和消费大国。近年来,由于天然林保护工程的实施,木材缺口进一步扩大,供需矛盾尖锐。为了增加木材资源的供应量,我国大力发展了人工速生林,其具有成材时间短,产量高等优点。但人工速生林具有材质疏松、密度小、强度低、不耐腐、尺寸稳定性差等缺点,导致其产品性能较差,附加值低。对速生木材进行改性处理,可以改善其力学性能、耐久性和尺寸稳定性,拓宽速生木材的适用范围,缓解供需矛盾。
化学法改良木材不仅能够克服天然木材尤其是速生材原有的缺陷,改善木材的力学性能,而且可以赋予木材阻燃性、耐腐性和疏水性等特定的新功能,提高其商业价值,实现木材的高效利用。化学改性已被认为是一种防止环境对木材破坏和维持其稳定性的有效策略,近几十年来,有关化学法改良木材的研究一直备受关注。化学改性主要是利用木材的多孔结构,通过加压浸渍的方式将改性剂注入木材内,然后在加热或催化剂作用下发生化学反应而固化。众所周知,改性剂只有与木材细胞壁发生化学反应并留存在细胞壁内才会对木材性能有明显的改善效果。因此,近些年来研究者们主要从选择合适的偶联剂和处理工艺方面不断尝试细胞壁改性,从而实现木材性能的有效改善。
在木材化学改性技术中只有乙酰化处理、树脂改性和糠醇化处理成功实现了大规模商业化生产,其中乙酰化和糠醇化处理符合细胞壁改性要求。为了提高改性剂与木材细胞壁之间的结合能力,通常会加入甲基丙烯酸缩水甘油酯、丙烯酸和马来酸酐等偶联剂。近两年的研究工作将两步处理法引入到细胞壁改性工艺中。目前,木材化学改性已经实现了细胞壁空间修饰的精确控制,同时在木材较低增重率的条件下实现尺寸稳定性的改善。
文章综述了国内外关于木材化学改性的研究进展,重点介绍了热固性树脂改性、石蜡改性、有机单体改性、乙酰化改性、糠醇化改性、氮羟甲基酰胺类化合物改性等对速生木材化学改性的原理及力学性能的影响,并分析了木材化学改良技术目前存在的问题及其未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇洪波
韩雁明
范东斌
李改云
储富祥
关键词:  速生材  交联反应  浸渍  细胞壁改性    
Abstract: As a natural material, wood plays an indispensable role in industrial production and daily life. China has always been a major producer and consumer of wood and its products. In recent years, the implementation of natural forest protection projects has further enlarged the insufficiency of wood supply, which intensifies the contradiction between the supply and demand of wood. In order to increase the supply of wood resources, China has made great efforts to develop artificial fast-growing forests with short production time and high yield. However, artificial fast-growing forest has many disadvantages such as loose material structure, low density, low strength, poor corrosion resistance and poor dimensional stability, which result in poor product performance and low added value. The modification of fast-growing wood can improve its physical and mechanical properties, broaden its scope of application, and relieve the contradiction between the supply and demand of wood.
The modification of wood by chemical agents can not only overcome the original deficiencies of natural wood, especially the fast-growing wood, improve their physical and mechanical performance, but also endow natural wood with specific properties like aging resistance, fire resistance and hydrophobicity, thus increases the commercial value and realizes the efficient utilization of the wood. Chemical modification has been recognized as an efficient strategy for dimensionally stabilizing wood and protecting it from environmental damage. In recent decades, the researches on chemical modification of wood has attracted great attention worldwide. Chemical modification of wood is a technique that the wood can be impregnated with modified agent thanks to its porous structure and then chemical curing occurred at the heat treatment or catalyst. It is universally known that only chemical modifiers penetrate into the cell wall and are locked inside the cell can wood properties be improved significantly. Therefore, aiming at improving wood properties, intensive research endeavors have been paid to seek favorable coupling agent and optimize fabrication process.
In the chemical modification of wood, only acetylation, resin modification and furfurylation treatment have been successfully realized large-scale commercial production. Acetylation and furfurylation treatment can meet the requirements of cell wall modification. Coupling agents such as glycidyl methacrylate, acrylic acid and maleic anhydride are usually added to improve the binding ability between modifier and wood cell wall. Recently, two-step treatment are introduced into the cell wall modification process. At present, the chemical modification of wood has realized the precise control of cell wall modification, and the dimensional stability improvement with low weight increment.
In this paper, the development and the state of the wood chemical modification at home and abroad are reviewed.The typical modification techniques including thermoset resins, wax, organic monomer, acetylation, furfurylation and N-methylolcompounds modification are introduced. The principle and properties of chemical modification on the fast-growing wood are analyzed. Finally, the current existing problems in the chemical modification of wood and the future development trend are discussed.
Key words:  fast-growing wood    crosslinking reaction    impregnated    cell wall modification
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  S781.7  
基金资助: 国家重点研发计划(2017YFD0600203)
通讯作者:  李改云:通信作者,女,副研究员,主要从事木材化学研究 E-mail:ligy@caf.ac.cn   
作者简介:  仇洪波:男,1989年生,博士研究生,主要从事木材化学改性研究 E-mail:947759364@qq.com
引用本文:    
仇洪波, 韩雁明, 范东斌, 李改云, 储富祥. 化学法改良速生木材研究进展[J]. 材料导报, 2018, 32(15): 2701-2708.
QIU Hongbo, HAN Yanming, FAN Dongbin, LI Gaiyun, CHU Fuxiang. Progress in Chemical Modification of Fast-Growing Wood. Materials Reports, 2018, 32(15): 2701-2708.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.023  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2701
1 Yan X L. Research on coupling effects of water and nitrogen in fast-growing and high-yield poplar plantations[D].Beijing: Beijing Fo-restry University,2016(in Chinese).
闫小莉.欧美108杨速生丰产林水氮耦合效应研究[D].北京:北京林业大学,2016.
2 国家林业局.第八次全国森林资源清查结果[J].林业资源管理,2014(1):1.
3 Trinh H M, Militz H, Mai C. Modification of beech veneers with N-methylol-melamine compounds for the production of plywood[J].European Journal of Wood and Wood Products,2012,70(4):421.
4 Papadopoulos A N, Tountziarakis P. Toughness of pine wood chemically modified with acetic anhydride[J].European Journal of Wood and Wood Products,2012,70(1-3):399.
5 Yue K, Cheng X C, Wang L L, et al. Effect of modification on mechanical property and fire-retardant behavior of fast-growing poplar wood[J].Journal of Combustion Science and Technology,2016,22(5):426(in Chinese).
岳孔,程秀才,王磊磊,等.改性处理对杨木力学和燃烧性能的影响[J].燃烧科学与技术,2016,22(5):426.
6 Homan W, Tjeerdsma B, Beckers E, et al. Structural and other properties of modified wood[C]∥World Conference on Timber Engineering. Switzerland,2000:5.
7 Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: A properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J].Wood Science & Technology,2004,37(5):349.
8 Deka M, Saikia C N. Chemical modification of wood with thermosetting resin: Effect on dimensional stability and strength property[J].Bioresource Technology,2000,73(2):179.
9 Huang Y H, Fei B H, Yu Y, et al. Effect of modification with phenol formaldehyde resin on the mechanical properties of wood from Chinese Fir[J].BioResources,2012,8(1):272.
10 Yu X C, Sun D L, Li X S. Preparation and characterization of urea-formaldehyde resin-sodium montmorillonite intercalation-modified poplar[J].Journal of Wood Science,2011,57(6):501.
11 Yue K, Liu W Q, Liu X N. Mechanical behavior and natural durabi-lity of fast-growing poplar wood modified by chemical treatment[J].Journal of Anhui Agricultural University,2011,38(3):453(in Chinese).
岳孔,刘伟庆,卢晓宁.化学改性对速生杨木木材力学性能和天然耐久性的影响[J].安徽农业大学学报,2011,38(3):453.
12 Liu X M, Yu Z J. Increase of bending strength of paulownia by urea-formaldehyde impregnation[J].Journal of Longyan University,2008,26(3):54(in Chinese).
刘喜明,于再君.采用脲醛树脂浸渍法提高泡桐抗弯性能[J].龙岩学院学报,2008,26(3):54.
13 Wang X G, Jin J W, Deng Y H, et al. The effects of phenol formaldehyde resin impregnation on the main physical and mechanical pro-perties of cunninghamia lanceolata lumber[J].Journal of Southwest Forestry University,2014(3):84(in Chinese).
王向歌,金菊婉,邓玉和,等.不同固含量低分子酚醛树脂浸渍改性杉木板材性能的研究[J].西南林业大学学报,2014(3):84.
14 Wang X G, Jin J W, Deng Y H, et al. Effect of phenol formaldehyde resin solids content on properties of impregnated pinus massoniana lumber[J].China Wood Industry,2014,28(4):17(in Chinese).
王向歌,金菊婉,邓玉和,等.低分子量酚醛树脂固体含量对浸渍改性马尾松的性能影响[J].木材工业,2014,28(4):17.
15 Jiang J X, Li J Z, Gao Q. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood[J].Construction and Building Materials,2015,75:74.
16 Xu G Q. Study on complex of camphor leaves extractive and its effect on bamboo preservation[D].Beijing:Chinese Academy of Forestry,2011(in Chinese).
徐国祺.樟树叶提取物复配及其处理毛竹抗菌性研究[D].北京:中国林业科学研究院,2011.
17 Yidiz Ümit C, Yildiz Z, Gezer E D. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey[J].Bioresour Technology,2005,96(9):1003.
18 Xie Y J, Fu Q L, Wang Q W, et al. Effects of chemical modification on the mechanical properties of wood[J].European Journal of Wood and Wood Products,2013,71(4):401.
19 Keplinger T, Cabane E, Chanana M, et al. A versatile strategy for grafting polymers to wood cell walls[J].Acta biomaterialia,2015,11:256.
20 Li Y F, Dong X Y, Lu Z G, et al. Effect of polymer in situ synthesized from methyl methacrylate and styrene on the morphology, thermal behavior, and durability of wood[J].Journal of Applied Polymer Science,2013,128(1):13.
21 Salman S, Pétrissans A, Thévenon M F, et al. Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment[J].European Journal of Wood and Wood Products,2016,74(1):37.
22 Scholz G, Krause A, Militz H. Exploratory study on the impregnation of Scots pine sapwood (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) with different hot melting waxes[J].Wood Science & Technology,2010,44(3):379.
23 Scholz G, Krause A, Militz H. Volltränkung modifizierten Holzes mit Wachs[J].European Journal of Wood and Wood Products,2012,70(1-3):91.
24 Brischke C, Melcher E. Performance of wax-impregnated timber out of ground contact: Results from long-term field testing[J].Wood Science and Technology,2015,49(1):189.
25 Lesar B, Kralj P, Humar M. Montan wax improves performance of boron-based wood preservatives[J].International Biodeterioration & Biodegradation,2009,63(3):306.
26 Nilguuml L O, Nihat S C. A new approach for acetylation of wood: Vinyl acetate[J].African Journal of Pure and Applied Chemistry,2012,6(6):78.
27 Sadeghifar H, Dickerson J P, Argyropoulos D S. Quantitative 31 P NMR analysis of solid wood offers an insight into the acetylation of its components[J].Carbohydrate polymers,2014,113:552.
28 Rowell R M, Ibach R E, McSweeny J, et al. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood[J].Wood Material Science & Engineering,2009,4(1-2):14.
29 Rowell R M. 14 Chemical modification of wood[J].Abstracts of Papers of the American Chemical Society,1983,81(2):90.
30 Li J Z, Furuno T, Katoh S, et al. Chemical modification of wood by anhydrides without solvents or catalysts[J].Journal of Wood Science,2000,46(3):215.
31 Chai Y B. Research on the process and mechanism of wood acetylation[D].Beijing: Chinese Academy of Forestry,2015(in Chinese).
柴宇博.木材乙酰化及其作用机制研究[D].北京:中国林业科学研究院,2015.
32 Evans P D, Wallis A F A, Owen N L. Weathering of chemically modified wood surfaces[J].Wood Science and Technology,2000,34(2):151.
33 Sander C, Beckers E P J, Militz H, et al. Analysis of acetylated wood by electron microscopy[J].Wood Science and Technology,2003,37(1):39.
34 Hill C A S, Khalil H P S A, Hale M D. A study of the potential of acetylation to improve the properties of plant fibres[J].Industrial Crops & Products,1998,8(1):53.
35 Li J Z, Furuno T, Zhou W R, et al. Properties of acetylated wood prepared at low temperature in the presence of catalysts[J].Journal of Wood Chemistry and Technology,2009,29(3):241.
36 Khalil H P S A, Awang K B, Bakare I O, et al. Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials[J].Materials & Design,2010,31(9):4363.
37 Hill C, Forster S C, Farahani M. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood[J].International Biodeterioration & Biodegradation,2005,55(1):69.
38 Mohebby B, Mai C, Militz H. Soft rot decay in acetylated wood: Microcalorimetry and ergosterol assay in decayed wood[C]∥Proceedings of the First European Conference on Wood Modification. Belgium,2003:197.
39 Militz H. The improvement of dimensional stability and durability of wood through treatment with non-catalysed acetic-acid anhydrid[J].Holz als Roh-und Werkstoff,1991,49(4):147.
40 Militz H, Son D W, Gómez-Hernández L, et al. Effect of fungal degradation on the chemical composition of acetylated beech wood[C]∥International Research Group on Wood Preservation, Brisbane,2003.
41 Shen X S, Zou X W, Li G Y. Review of wood modification technology with furfuryl alcohol resin[J].China Wood Industry,2017,31(3):27(in Chinese).
沈晓双,邹献武,李改云.糠醇树脂木材改性技术研究进展[J].木材工业,2017,31(3):27.
42 Nordstierna L, Lande S, Westin M, et al. Towards novel wood-based materials: Chemical bonds between lignin-like model molecules and poly(furfuryl alcohol) studied by NMR[J].Holzforschung,2008,62(6):709.
43 Pilgård A, Treu A, Van Zeeland A N T, et al. Toxic hazard and chemical analysis of leachates from furfurylated wood[J].Environmental Toxicology and Chemistry,2010,29(9):1918.
44 Lande S, Westin M, Schneider M. Development of modified wood products based on furan chemistry[J].Molecular Crystals and Liquid Crystals,2008,484(1):367-1.
45 He L. Study the mechanism of fururylated wood and mechanical behavior[D].Changsha: Central South University of Forestry and Technology,2012(in Chinese).
何莉.马尾松木材糠醇树脂改性技术及机理研究[D].长沙:中南林业科技大学,2012.
46 Li W J, Ren D, Zhang X X, et al. The furfurylation of wood: A nanomechanical study of modified wood cells[J].BioResources,2016,11(2):3614.
47 Lande S. Furfurylation of wood: Chemistry, properties, and commercialization[J].ACS Symposium,2008,982:337.
48 Alfredsen G, Ringman R, Fossdal C G. New insight regarding mode of action of brown rot decay of modified wood based on DNA and gene expression studies: A review[J].International Wood Products Journal,2015,6(1):5.
49 Alfredsen G, Westin M. Durability of modified wood-laboratory vs field performance[C]∥Proceedings of the 4 th European Conference on Wood Modification. Sweden,2009.
50 Hadi Y S, Westin M, Rasyid E. Resistance of furfurylated wood to termite attack[J].Forest Products Journal,2005,55(11):85.
51 De Vetter L, Depraetere G, Janssen C, et al. Methodology to assess both the efficacy and ecotoxicology of preservative-treated and modified wood[J].Annals of Forest Science,2008,65(5):504.
52 Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: The state of the art of technologies and commercialization[J].Scientia Silvae Sinicae,2012,48(9):154(in Chinese).
谢延军,符启良,王清文,等.木材化学功能改良技术进展与产业现状[J].林业科学,2012,48(9):154.
53 Jiang T, Gao H, Sun J P, et al. Impact of DMDHEU resin treatment on the mechanical properties of poplar[J].Polymers & Polymer Composites,2014,22(8):669.
54 Yuan J, Hu Y C, Li L F, et al. The mechanical strength change of wood modified with DMDHEU[J].BioResources,2013,8(1):1076.
55 Xie Y, Krause A, Mai C, et al. Weathering of wood modified with the N-methylol compound 1, 3-dimethylol-4, 5-dihydroxyethyleneurea[J].Polymer Degradation and Stability,2005,89(2):189.
56 Xie Y, Krause A, Militz H, et al. Coating performance of finishes on wood modified with an N-methylol compound[J].Progress in organic coatings,2006,57(4):291.
57 Verma P, Junga U, Militz H, et al. Protection mechanisms of DMDHEU treated wood against white and brown rot fungi[J].Holzforschung,2009,63(3):371.
58 Barroso Lopes D, Mai C, Militz H. Marine borers resistance of chemically modified portuguese wood[J].Maderas Ciencia Y Tecnología,2014,16(1):109.
59 Dieste A, Krause A, Militz H. Modification of Fagus sylvatica (L.) with 1, 3-dimethylol-4, 5-dihydroxyethylene urea (DMDHEU): Part 1. Estimation of heat adsorption by the isosteric method (Hailwood-Horrobin model) and by solution calorimetry[J].Holzforschung,2008,62(5):577.
[1] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed