Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2715-2718    https://doi.org/10.11896/j.issn.1005-023X.2018.16.002
  无机非金属及其复合材料 |
先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能
赵爽1, 杨自春1, 周新贵2
1 海军工程大学舰船高温结构复合材料研究室,武汉 430033;
2 国防科技大学新型陶瓷纤维及其复合材料国家重点实验室,长沙 410073
SiC/SiC Composites Produced by the Combinational Process of Polymer Impregnation & Pyrolysis and Chemical Vapor Infiltration: a Comparative Microstructure and Properties Study upon 2.5D and 3D Braiding Structures
ZHAO Shuang1, YANG Zichun1, ZHOU Xingui2
1 Institution of High-temperature Structural Composites for Ship, Naval University of Engineering, Wuhan 430033;
2 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 1310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过先驱体浸渍裂解工艺结合化学气相渗透工艺(PIP+CVI)制备了二维半(2.5D)和三维(3D)编织结构的碳化硅纤维增强碳化硅基(SiC/SiC)复合材料,对两者的密度、热导率、力学性能以及微观结构等进行了测试分析。结果表明,PIP+CVI工艺制备的SiC/SiC复合材料具有较低的密度(1.98~2.43 g·cm-3)和热导率(0.85~2.08 W·m-1·K-1),初期CVI纤维涂层能够提高纤维-基体界面剪切强度(~141.0 MPa),从而提高SiC/SiC复合材料的力学性能,后期CVI整体涂层明显提高了2.5D SiC/SiC复合材料的密度、热导率和力学性能,对3D SiC/SiC复合材料性能的影响不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵爽
杨自春
周新贵
关键词:  先驱体浸渍裂解(PIP)  化学气相渗透(CVI)  编织结构  碳化硅纤维增强碳化硅基(SiC/SiC)复合材料  致密度  热导率  力学性能    
Abstract: By applying the combinational process of polymer impregnation & pyrolysis and chemical vapor infiltration (PIP+CVI), the present work successfully carried out the fabrication of a 2.5 dimensional and a 3 dimensional SiC/SiC composite, as well as the porosity, thermal conductivity, mechanical property and microstructure characterization and analyses for the products. The low density (1.98-2.43 g·cm-3) and low thermal conductivity (0.85-2.08 W·m-1·K-1) of the PIP+CVI 2.5D and 3D SiC/SiC composites could be confirmed from the experiment. And moreover, it can be deduced that the pre-weave CVI fiber coating improves the fiber-matrix interface shear strength and hence the resultant composite’s mechanical properties, while the effectiveness of post-pyrolysis overall CVI coating toward the density, thermal conductivity and mechanical properties promotion is notable for the 2.5D SiC/SiC composite but inconspicuous for the 3D one.
Key words:  polymer impregnation and pyrolysis (PIP)    chemical vapor infiltration (CVI)    braiding structure    SiC-fiber-reinforced SiC matrix (SiC/SiC) composite    density    thermal conductivity    mechanical property
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51372274);海军工程大学科研发展基金(20160135;425317K153)
作者简介:  赵爽:男,1984年生,博士,讲师,主要从事陶瓷基复合材料研究 E-mail:zhsh6007@126.com
引用本文:    
赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
ZHAO Shuang, YANG Zichun, ZHOU Xingui. SiC/SiC Composites Produced by the Combinational Process of Polymer Impregnation & Pyrolysis and Chemical Vapor Infiltration: a Comparative Microstructure and Properties Study upon 2.5D and 3D Braiding Structures. Materials Reports, 2018, 32(16): 2715-2718.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.002  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2715
1 Madar R. Materials science: Silicon carbide in contention[J]. Nature,2004,430(7003):974.
2 Zhao S, Yang Z, Zhou X, et al. Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor[J]. Journal of the American Ceramic Society,2015,98(4):1332.
3 Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications[J]. Journal of the European Ceramic Society,2013,33(10):1577.
4 Liu Y, Zhu J, Chen Z, et al. Mechanical behavior of 2.5D (shallow straight-joint) and 3D four-directional braided SiO2f/SiO2 composites[J]. Ceramics International,2012,38(5):4245.
5 Zhao S, Yang Z, Zhou X, et al. Design, fabrication, characterization and simulation of PIP-SiC/SiC composites[J]. Computers, Materials & Continua,2014,42(2):103.
6 Nannetti C, Riccardi B, Ortona A, et al. Development of 2D and 3D Hi-nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route[J]. Journal of Nuclear Materials,2002,307-311(2):1196.
7 Morscher G. Advanced woven SiC/SiC composites for high temperature applications[C]// Composites at Lake Louise Canada. Alberta,2007.
8 Yuan Q, Song Y C. Research and development of continuous SiC fibers and SiCf/SiC composities[J]. Journal of Inorganic Materials,2016,31(11):1157(in Chinese).
袁钦,宋永才.连续SiC纤维和SiCf/SiC复合材料的研究进展[J].无机材料学报,2016,31(11):1157.
9 Chen W Y, Ding Z X. Pyrolysis kinetic behaviours of polycarbosilane by thermal analysis method[J]. Journal of the Chinese Ceramic Society,2012,40(9):1278(in Chinese).
陈文怡,丁治珣.聚碳硅烷的热裂解动力学行为研究[J].硅酸盐学报,2012,40(9):1278.
10 中国国家标准化管理委员会.GB/T 6569-2006,精细陶瓷弯曲强度试验方法[S].北京:中国标准出版社,2006.
11 中国国家标准化管理委员会.GB/T 23806-2009,精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法[S].北京:中国标准出版社,2009.
12 Zuo X Z, Zhang L T, Liu Y S, et al. Thermodynamic calculation of CH3SiCl3-BCl3-H2 system vapor deposition[J]. Acta Materiae Compositae Sinica,2010,27(5):55(in Chinese).
左新章,张立同,刘永胜,等.CH3SiCl3-BCl3-H2体系气相沉积的热力学计算[J].复合材料学报,2010,27(5):55.
13 Yu H, Zhou X, Zhang W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces[J]. Composits Science and Technology,2011,71(5):699.
14 Yao X M, Huang Z R, Tan S H. Preparation of silicon carbide reti-culated porous ceramics sintered at low temperature with PCS as sintering additive[J]. Journal of Inorganic Materials,2010,25(2):168(in Chinese).
姚秀敏,黄政仁,谭寿洪.聚碳硅烷低温烧结碳化硅网眼多孔陶瓷的研制[J].无机材料学报,2010,25(2):168.
15 Zhao S, Zhou X, Yu J, et al. Fabrication and characterization of 2.5D and 3D SiCf/SiC composites[J]. Fusion Engineering and Design,2013,88(9-10):2453.
16 Zhao S, Yang Z, Zhou X. Fabrication and characterization of in-situ grown carbon nanotubes reinforced SiC/SiC composite[J]. Ceramics International,2016,42(7):9264.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed