Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24034-24039    https://doi.org/10.11896/cldb.19110183
  无机非金属及其复合材料 |
煤矸石粉煤灰加气混凝土的制备及性能
王长龙1,2,3, 张凯帆1, 左伟4, 叶鹏飞1, 赵高飞1, 任真真1, 林庚5
1 河北工程大学土木工程学院,邯郸056038
2 商洛学院,陕西省尾矿资源综合利用重点实验室,商洛726000
3 天津舜能世嘉环保科技有限公司,天津300380
4 中煤地质集团有限公司,北京水工环地质勘查院,北京100040
5 西安科技大学化学与化工学院,西安710054
Preparation and Properties of Autoclaved Aerated Concrete Using Coal Gangue and Fly Ash
WANG Changlong1,2,3, ZHANG Kaifan1, ZUO Wei4, YE Pengfei1, ZHAO Gaofei1, REN Zhenzhen1, LIN Geng5
1 School of Civil Engineering, Hebei University of Engineering, Handan 056038, China
2 Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
3 Tianjin Sunenergy Sega Environmental Science & Technology Co. Ltd, Tianjin 300380, China
4 Beijing Institute of Hydraulic and Environmental Geological Survey, China Coal Geology Group Co., Ltd., Beijing 100040, China
5 School of Chemistry and Chemical Engineering, Xi′an University of Science and Technology, Xi′an 710054, China
下载:  全 文 ( PDF ) ( 3769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以煤矸石和粉煤灰为主要原料制备加气混凝土,研究了煤矸石的最佳热活化温度以及煤矸石掺量对加气混凝土物理力学性能的影响,并采用X射线衍射(XRD)、场发射扫描电镜(SEM)分析加气混凝土制品的物相组成和微观形貌。结果表明,煤矸石的最佳煅烧温度为600 ℃,绝干密度为588 kg/m3,抗压强度为3.65 MPa,达到了《蒸压加气混凝土砌块》(GB 11968-2006)规定的A3.5、B06级加气混凝土合格品的要求;经静停养护后的坯体中出现水化产物钙矾石(AFt)、托贝莫来石、C-S-H凝胶和水石榴子石;经蒸压养护后的制品中钙矾石分解,水化产物主要为结晶良好的托贝莫来石、C-S-H凝胶和水石榴子石。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王长龙
张凯帆
左伟
叶鹏飞
赵高飞
任真真
林庚
关键词:  煤矸石  粉煤灰  加气混凝土  托贝莫来石  水石榴子石    
Abstract: In this paper, a new type of autoclaved aerated concrete (AAC) was developed using coal gangue and fly ash. The calcination temperatures of the coal gangue, effect of coal gangue content on physical and mechanical properties of AAC, and phase composition and microscopic morphology of AAC were analyzed using X-ray diffraction (XRD), and scanning electron microscope (SEM). And the result shows that 600 ℃ is the optimal calcination temperature, AAC with bulk density of 588 kg/m3 and strength of 3.65 MPa, which can reach the requirements of A3.5, B06 level of AAC product regulated by “autoclaved aerated concrete block” GB 11968-2006. After static curing, the hydration products in AAC body were ettringite (AFt), tobermorite, C-S-H gels and hydrated garnet; during the autoclaving, AFt was decomposed and more tobermorite formed coupled with C-S-H gels and hydrated garnet.
Key words:  coal gangue    fly ash    autoclaved aerated concrete    tobermorite    hydrated garnet
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TU528  
基金资助: 中国博士后科学基金(2016M602082);河北省自然科学基金(E2018402119,E2020402079);陕西省尾矿资源综合利用重点实验室开放基金(2017SKY-WK008);固废资源化利用与节能国家重点实验室开放基金(SWR-2017-006)
通讯作者:  26768094@qq.com   
作者简介:  王长龙,河北工程大学,教授。2014年1月毕业于北京科技大学,矿业工程博士专业学位。长期从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。 在国内外重要期刊发表文章60多篇,申报发明专利10余项。
左伟,中煤地质集团有限公司北京水工环地质勘查院副院长,教授级高工。2010年1月毕业于北京科技大学,获得矿业工程博士专业学位。从事环境科学及固废资源化研究。在国内外重要期刊发表文章20多篇,申报发明专利10余项。
引用本文:    
王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
WANG Changlong, ZHANG Kaifan, ZUO Wei, YE Pengfei, ZHAO Gaofei, REN Zhenzhen, LIN Geng. Preparation and Properties of Autoclaved Aerated Concrete Using Coal Gangue and Fly Ash. Materials Reports, 2020, 34(24): 24034-24039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110183  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24034
1 Yang M, Guo Z X, Deng Y S, et al.International Journal of Mineral Processing, 2012, 102-103(1), 112.
2 Li D X, Song X Y, Gong C C.Cement and Concrete Research, 2006, 36(9), 1752.
3 Li C, Wan J H, Sun H H, et al.Journal of Hazardous Materials, 2010, 179(1), 515.
4 Zhang N, Sun H H, Liu X M, et al.Journal of Hazardous Materials, 2009, 167(1), 927.
5 Ma Z G, Gong P, Fan J Q, et al.Mining Science and Technology (China), 2011, 21(6), 829.
6 Chugh Y P, Patwardhan A.Resources, Conservation and Recycling, 2004, 40(3), 225.
7 Yang Y Z, Deng H W, Gao X J, et al.Materials Science and Technology, 2009, 17(2), 239(in Chinese).
杨英姿, 邓宏卫, 高小建, 等.材料科学与工艺, 2009, 17(2), 239 (in Chinese).
8 Zhang X F, Ni W, Wang W, et al.Materials Reports B:Research Papers, 2009, 23(3), 93 (in Chinese).
张旭芳, 倪文, 王薇, 等.材料导报:研究篇, 2009, 23(3), 93.
9 Huang C H, Lin S K, Chang C S, et al.Constrction and Building Mate-rials, 2013, 46(5), 71.
10 Deschner F, Winnefeld F, Lothenbach B.Cement and Concrete Research, 2012, 42(10),1389.
11 Shakir A A, Naganathan S, Mustapha K N.Construction and Building Materials, 2013, 41(4), 131.
12 Zeng Q, Li K F, Fen-chong T, et al.Cement and Concrete Research, 2012, 42(1), 194.
13 Wu X M, Fan Y M.Journal of South China University of Technology (Natural Science Edition), 2003, 31(8), 57 (in Chinese).
吴笑梅, 樊粤明.华南理工大学学报(自然科学版), 2003, 31(8), 57.
14 Cui K H, Ma B G, Yi H Y.Journal of the Chinese Ceramic Society, 1992, 20(2), 123 (in Chinese).
崔可浩, 马保国, 易海云.硅酸盐学报, 1992, 20(2), 123.
15 Qian X Q, Zheng L.Journal of the Chinese Ceramic Society, 1991, 19(6), 495 (in Chinese).
钱晓倩, 郑立.硅酸盐学报, 1991, 19(6), 495.
16 Saygili A, Baykal G.Energy and Buildings, 2011, 43(11), 3236.
17 Hauser A, Eggenberger U, Mumenthaler T.Cement and Concrete Research, 1999, 29(3), 297.
18 Kurama H, Topcu I B, Karakurt C.Journal of Materials Processing Technology, 2009, 209(2),767.
19 Wang C L, Ni W, Li D Z, et al.Materials Science and Technology, 2012, 20(6), 7 (in Chinese).
王长龙, 倪文, 李德忠, 等.材料科学与工艺, 2012, 20(6), 7.
20 Wang C L, Qiao C Y, Wang S, et al.Journal of China Coal Society, 2014, 39(4), 764 (in Chinese).
王长龙, 乔春雨, 王爽,等.煤炭学报, 2014, 39(4), 764.
21 Wang C L, Ni W, Zhang S Q, et al.Construction and Building Materials, 2016, 104(1), 109.
22 Kakali G, Perraki T, Tsivilis S, et al.Applied Clay Science, 2001, 20(1), 73.
23 Yang N R, Yue W H.Atlas manual for inorganic nonmetallic materials, Wuhan University of Technology Press, China, 2000 (in Chinese).
杨南如, 岳文海.无机非金属材料图谱手册, 武汉工业大学出版社, 2000.
24 Li Y F, Wang W X, Yang X Y.Journal of the Chinese Ceramic Society, 2007, 35(9), 1258 (in Chinese).
李永峰, 王万绪, 杨效益.硅酸盐学报, 2007, 35(9), 1258.
25 Liu D, Liu F T, Zhang D C, et al.Brick-Tile, 2014 (10), 10 (in Chinese).
柳东, 刘福田, 张德成, 等.砖瓦, 2014(10), 10.
26 Bensted J, Barnes P.Structure and performance of cements, 2nd edition, Spon Press,USA, 2002.
27 You B K, Chen F Y, Han L L, et al.Journal of the Chinese Ceramic Society, 2000, 28(4), 314 (in Chinese).
游宝坤, 陈富银, 韩立林,等.硅酸盐学报, 2000, 28(4), 314.
28 Yan P Y, Peng J, Qin X.Journal of the Chinese Ceramic Society, 2001, 29(2), 109 (in Chinese).
阎培渝, 彭江, 覃肖.硅酸盐学报, 2001, 29(2), 109.
29 Scrivener K L, Damidot D, Famy C.Cement, Concrete and Aggregates, 1999, 21(1), 93.
[1] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[2] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[3] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[4] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[5] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[6] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[7] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[8] 刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验. 粒状煤矸石制备活性粉体材料的颜色转变及其量化表征[J]. 材料导报, 2020, 34(16): 16037-16042.
[9] 孙道胜, 王辉, 刘开伟, 王爱国, 李萍, 张高展, 管艳梅. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086.
[10] 刘灏, 李青, 黄秉章, 黄榜彪, 李杰能, 王锐, 谢伟标, 梁晓前. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报, 2019, 33(Z2): 229-232.
[11] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[12] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[13] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[14] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[15] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed