Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16037-16042    https://doi.org/10.11896/cldb.19090050
  无机非金属及其复合材料 |
粒状煤矸石制备活性粉体材料的颜色转变及其量化表征
刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验
安徽建筑大学,安徽省先进建筑材料重点实验室,合肥 230022
Color Transition and Its Quantitative Characterization of Active Powder Material Prepared from Granular Coal Gangue
LIU Peng, WANG Aiguo, LIU Kaiwei, MA Rui, XU Haiyan, SUN Daosheng, JING Yan
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
下载:  全 文 ( PDF ) ( 5979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石经过适宜温度煅烧、粉磨后可制备活性混合材。但由于煤矸石的组成较为复杂,煅烧后其颜色变化较大,在水泥基材料中大掺量应用会影响水泥基材料的色泽。若能制备出与水泥基材料色差较小的煅烧煤矸石活性粉体材料,则对煤矸石在水泥工业中的应用有着重要意义。本工作研究了制备工艺对煅烧煤矸石活性粉体材料颜色的影响;基于PS软件中红、绿、蓝(RGB)三个通道的颜色值量化表征了煅烧煤矸石活性粉体材料的颜色;分析了粒状煤矸石制备活性粉体材料颜色转变的机理。结果表明:热活化时,煤矸石颗粒越小、热活化保温时间越长、煅烧环境中氧气越充足,制得的煅烧煤矸石活性粉体材料颜色越红,其红色值(R值)也越高。煤矸石中炭和菱铁矿的氧化程度是影响煅烧煤矸石活性粉体材料颜色的主要原因。当黑色的炭脱除较充分、菱铁矿被氧化为赤铁矿时材料颜色较红,而炭脱除不充分、菱铁矿被氧化为磁铁矿时材料颜色较黑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘朋
王爱国
刘开伟
马瑞
徐海燕
孙道胜
经验
关键词:  粒状煤矸石  活性粉体材料  颜色转变  量化表征    
Abstract: The coal gangue (CG) can be prepared into active mixture material after it was calcined at suitable temperature and then ground. However, due to the complex composition of CG, its color changed greatly after it was calcined. The application of large amount of calcined coal gangue (CCG) in cement-based materials will affect the color of cement-based materials. It is of great significance for the application of CG in cement industry if CCG active powder material with small color difference from cement-based materials can be prepared. In this paper, the influence of preparation process on the color of CCG active powder material was explored; the color of CCG active powder materials was quantitatively characterized and evaluated based on Red, Green, Blue value in PS software; the mechanism of color transition of active powder materials prepared from granular coal gangue was analyzed. The results showed that, during the thermal activation, the redder the color of CCG active powder materials and the higher their Red value were beneficial to the smaller of CG, the longer the holding time of thermal activation and the more sufficient the oxygen in the calcination environment. The oxidation degree of carbon and siderite in CG was the main reason that affects the color of CCG active powder materials. When the black carbon was removed sufficiently and siderite was oxidized to hematite, the color of the material was red, but when carbon was not removed sufficiently and siderite was oxidized to magnetite, the color of the material was black.
Key words:  granular coal gangue    active powder material    color transition    quantitative characterization
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TU528.041  
基金资助: 国家自然科学基金(51778003,51608004);安徽省重点研究与开发计划项目(202004611020033); 安徽省教育厅自然科学基金 (KJ2019JD16); 安徽建筑大学引进人才及博士启动基金(2019QZ15)
通讯作者:  wag3134@126.com   
作者简介:  刘朋,2019年6月毕业于安徽建筑大学,获得工程硕士学位。同年进入南京工业大学攻读博士学位,主要从事建筑功能材料、固体废弃物资源化利用研究。
王爱国,安徽建筑大学,教授,硕士研究生导师。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland, Centre for Future Materials做访问学者。主持和参与国家自然科学基金项目、安徽省高校自然科学研究重点研究项目、高性能土木工程材料国家重点实验室开放课题和材料化学工程国家重点实验室开放课题等省部级以上项目10项。Construction and Building MaterialsCement and Concrete Composites 、《材料导报》《硅酸盐通报》等学术期刊审稿人,中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
引用本文:    
刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验. 粒状煤矸石制备活性粉体材料的颜色转变及其量化表征[J]. 材料导报, 2020, 34(16): 16037-16042.
LIU Peng, WANG Aiguo, LIU Kaiwei, MA Rui, XU Haiyan, SUN Daosheng, JING Yan. Color Transition and Its Quantitative Characterization of Active Powder Material Prepared from Granular Coal Gangue. Materials Reports, 2020, 34(16): 16037-16042.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090050  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16037
1 Wu H, Wen Q B, Hu L M, et al. Waste Management, 2017, 63, 161.
2 Li D X, Song X Y, Gong C C, et al. Cement and Concrete Research, 2006, 36, 1752.
3 Long G C, Li L H, Li W G, et al. Journal of Cleaner Production, 2019, 231, 468.
4 Teklay A, Yin C G, Rosendahl L, et al. Cement and Concrete Research, 2014, 61-62,11.
5 Wang A G, Liu P, Sun D S, et al. Materials Reports A:Review Papers, 2018, 32(6), 121(in Chinese).
王爱国,刘朋,孙道胜,等. 材料导报:综述篇, 2018, 32(6), 121.
6 Cao Z, Cao Y D, Dong H J, et al. International Journal of Mineral Processing, 2016, 146, 23.
7 Cao Y D, Cao Z, Zhang J S. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 356(in Chinese).
曹永丹, 曹钊, 张金山. 硅酸盐通报, 2019, 38(2), 356.
8 Yi C, Ma H Q, Zhu H G, et al. Construction and Building Materials, 2018, 167, 649.
9 Yang M, Guo Z X, Deng Y S, et al. International Journal of Mineral Processing, 2012, 102(5), 112.
10 Li J Y, Wang J M. Journal of Cleaner Production, 2019, 239,117946.
11 Guo W. Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(2),326.
12 Zhao Z M, Yan B. Mining and Metallurgical Engineering, 2002, 22(3), 54(in Chinese).
赵志曼, 袁波. 矿冶工程, 2002, 22(3), 54.
13 Moghadam M J, Ajalloeian R, Hajiannia A. Construction and Building Materials, 2019, 221, 84.
14 Liu C J, Deng X W, Liu J, et al. Construction and Building Materials, 2019, 221, 691.
15 Zhou M, Dou Y W, Zhang Y Z, et al. Construction and Building Mate-rials, 2019, 220, 386.
16 Zhou M, Li S W, Dou Y W, et al. Journal of building materials, 2018, 21(6), 134(in Chinese).
周梅, 李少伟, 窦艳伟, 等. 建筑材料学报, 2018, 21(6), 134.
17 Charrière D, Behra P. Journal of Colloid and Interface Science, 2010, 344(2), 460.
18 Yu J L, Tahmasebi A, Han Y N, et al. Fuel Processing Technology, 2013, 106, 9.
19 Li M, Zhang H, Sun M, et al. Coal Conversion, 2004, 27(3), 68(in Chinese).
李梅, 张洪, 孙明, 等. 煤炭转化, 2004, 27(3), 68.
20 Pang Y L, Xiao G X, Jiu S W. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2007, 39(1),136(in Chinese).
庞永莉, 肖国先, 酒少武. 西安建筑科技大学学报(自然科学版), 2007, 39(1), 136.
21 Gasparini E, Tarantino S C, Ghigna P, et al. Applied Clay Science, 2013, 80-81,417.
22 Chen Z Y, Chai J L, Li Y. Refractories, 2005, 39(3), 207(in Chinese).
陈肇友, 柴俊兰, 李勇. 耐火材料, 2005, 39(3), 207.
23 Li Q, Liu H B, Chen T H, et al. Acta Scientiae Circumstantiae, 2017, 37(7), 2482(in Chinese).
李骞, 刘海波, 陈天虎, 等. 环境科学学报, 2017, 37(7), 2482.
24 Bell M S, Schwandt C S, Zolensky M E, et al. Meteoritics and Planetary Science, 2002, 37(7), 1.
25 Hu G L, Dam-Johansen K, Wedel S, et al. Progress in Energy and Combustion Science, 2006, 32(3), 295.
26 Xing B B, Chen T H, Qing C S, et al. Journal of the Chinese Ceramic Society, 2016, 44(8), 1207(in Chinese).
邢波波, 陈天虎, 庆承松, 等. 硅酸盐学报, 2016, 44(8), 1207.
[1] 张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
[2] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[3] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[4] 何伟, 周予启, 王强. 铜渣粉作为混凝土掺合料的研究进展[J]. 材料导报, 2018, 32(23): 4125-4134.
[5] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[6] 张长森, 朱宝贵, 李杨, 冯桢哲, 王毓, 胡志超. 镍渣/偏高岭土基地聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(23): 193-197.
[7] 陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
[8] 杨医博, 普永强, 严卫军, 郭文瑛, 王恒昌. 碱渣用作砂浆保水剂的试验研究*[J]. 《材料导报》期刊社, 2017, 31(20): 114-118.
[9] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed