Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14105-14109    https://doi.org/10.11896/cldb.19060055
  无机非金属及其复合材料 |
硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究
张长森1, 胡志超1, 2, 王旭1, 3, 诸华军1, 杨旭1, 顾薛苏1
1 盐城工学院材料科学与工程学院, 盐城 224051
2 江苏大学材料科学与工程学院, 镇江 212013
3 安徽理工大学材料科学与工程学院, 淮南 232001
Hydration Heat and Hydration Kinetics of Silane Coupling Agent/Metakaolin Based Geopolymers
ZHANG Changsen1, HU Zhichao1, 2, WANG Xu1, 3, ZHU Huajun1, YANG Xu1, GU Xuesu1
1 School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
3 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 3484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究硅烷偶联剂对偏高岭土基地聚合物水化的影响,通过水化热和水化动力学分析,研究了不同种类及不同掺量的硅烷偶联剂对地聚合物水化进程的影响,并结合SEM-EDS对地聚合物早期水化微观形貌进行分析。结果表明,随着硅烷偶联剂掺量的增加,地聚合物的凝结时间延长。掺入硅烷偶联剂后地聚合物在加速期水化放热加快,进入减速期后未掺硅烷偶联剂的地聚合物的放热速率比掺入硅烷偶联剂的快,此时期硅烷偶联剂抑制地聚合物的水化进程。硅烷偶联剂的掺入对地聚合物的累积水化放热量影响不大,所有试样的累积水化放热量基本相同,相差在2%以内。结合水化动力学参数发现,水化过程大致分为加速期、减速期和稳定期。在加速期,水化反应被化学催化反应控制,掺入硅烷偶联剂的体系会发生强烈的化学反应,水化速率加快;在减速期,水化产物在颗粒表面形成薄膜,反应阻力加大,水化速率减缓;稳定期则由扩散机制控制反应过程。结合SEM-EDS图发现,硅烷偶联剂的掺入未改变地聚合物水化产物的矿物组成,但能起到桥接作用,使地聚合物结构更加致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张长森
胡志超
王旭
诸华军
杨旭
顾薛苏
关键词:  硅烷偶联剂  偏高岭土  水化热  水化动力学    
Abstract: Akinetic study by hydration heat was reported to research the influences of different dosages and kinds of silane coupling agent on the hydration process of metakaolin-based geopolymer, and the micro-morphology of early hydration of geopolymer was analyzed by SEM-EDS. The results showed that the setting time of geopolymer with silane coupling agent was longer than that of neat geopolymer, and the setting time was prolonged with the increase of silane coupling agent. The hydration exothermic rate of geopolymer with silane coupling agent accelerated during the acceleration period and the exothermic rate of neat geopolymer is faster than that of geopolymer with silane coupling agent after entering the deceleration period. During this period, silane coupling agent inhibited the hydration process of geopolymer. The addition of silane coupling agent had little effect on the cumulative hydration heat of geopolymer and the cumulative hydration heat of samples was almost the same, the difference was less than 2%. The hydration process of geopolymer could be divided into acceleration, deceleration and stable periods by analyzing the hydration kinetic parameters. The hydration was controlled by chemical catalysis reaction during acceleration period and the strong chemical reaction occurred with the addition of silane coupling agent, which accelerated the hydration rate. The hydration products formed films on the surface of particles during the deceleration period, which increased the reaction resistance and retarded the reaction rate. During the stable period, the reaction process was controlled by diffusion mechanism. The addition of silane coupling agent didn't change the mineral composition of the hydration products of geopolymer by observing SEM images, but silane coupling agent acted as a bridge to make the structure of geopolymer more compact.
Key words:  silane coupling agent    metakaolin    hydration heat    hydration kinetics
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TU528.041  
基金资助: 国家自然科学基金(51672236)
作者简介:  张长森,盐城工学院材料科学与工程学院,教授,硕士研究生导师,1982年毕业于武汉建筑材料学院(现武汉理工大学),主要从事无机非金属材料的研究工作,重点研究胶凝材料和生态环境材料的制备、表征及应用开发等,在国内外期刊发表论文60余篇,申请国家发明专利授权8项。获教育部科技进步二等奖1项、中国建材联合会科技进步三等奖1项、省级优秀教学成果奖3项等。
引用本文:    
张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
ZHANG Changsen, HU Zhichao, WANG Xu, ZHU Huajun, YANG Xu, GU Xuesu. Hydration Heat and Hydration Kinetics of Silane Coupling Agent/Metakaolin Based Geopolymers. Materials Reports, 2020, 34(14): 14105-14109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060055  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14105
1 Zhang D W, Wang D M. Materials Review A:Review Papers, 2018, 32(9),1519(in Chinese).
张大旺, 王栋民. 材料导报:综述篇, 2018, 32(9),1519.
2 Shi H S, Guo X L, Xia M, et al. Journal of Functional Materials, 2015, 46(4), 4081(in Chinese).
施惠生, 郭晓潞, 夏明,等. 功能材料, 2015, 46(4),4081
3 Wan Q, Rao F, Song S X. Journal of Non-Crystalline Solids, 2017, 460,74.
4 Ding Q J, Zhang G Z, Wang H X, et al. Journal of Wuhan University of Technology, 2007 (1),18(in Chinese).
丁庆军, 张高展, 王红喜, 等. 武汉理工大学学报, 2007(1), 18
5 Geng J J, Zhou M, Li Y X, et al. Construction and Building Materials, 2017, 153, 185
6 Zhang C S, Zhu B G, Li Y, et al. Materials Review B: Research Papers, 2017, 31(12), 193(in Chinese).
张长森, 朱宝贵, 李杨, 等. 材料导报:研究篇, 2017, 31(12), 193.
7 Yang T, Yao X, Zhang Z H. Construction and Building Materials, 2014, 59,188.
8 Toniolo N, Rincón A, Avadhut Y S, et al. Materials Letters, 2018, 219, 152.
9 Zhang L X, Hu C G, Feng X X, et al. Construction Technology, 2016(1), 94(in Chinese).
张立侠, 胡晨光, 封孝信, 等. 建设科技, 2016 (1), 94.
10 Wang H F, Liu J, Que Y S, et al. Journal of Materials Science and Engineering, 2016, 34(6), 895(in Chinese).
汪海风, 刘杰, 阙永生, 等. 材料科学与工程学报, 2016, 34(6), 895.
11 Glukhovsky V D, Zaitsev Y, Pakhomow V. Silicates Industriels, 1983, 48(10), 197.
12 Davidovits J. Journal of Thermal Analysis and Calorimetry, 1991, 37(8), 1633.
13 Li H J. Materials Review B: Research Papers, 2007, 21(9), 91(in Chinese).
李化健. 材料导报:研究篇, 2007, 21(9), 91.
14 Zhang Y S, Sun W, Zhen K R, et al. Journal of Building Materials, 2004,7(1), 8(in Chinese).
张云升, 孙伟, 郑克仁, 等. 建筑材料学报, 2004, 7(1), 8.
15 Zhang Y S, Sun W, Lin W, et al. Journal of the Chinese Ceramic Society, 2003 (8),806(in Chinese).
张云升,孙伟,林玮,等. 硅酸盐学报, 2003 (8), 806.
16 Wang X G. The application research of silane coupling agent modification polycarboxylate superplasticizer in cement paste. Master's Thesis, Xi'an University of Architecture and Technology,China,2017(in Chinese).
王兴国. 硅烷偶联剂改性聚羧酸减水剂及其在水泥中的应用研究,硕士学位论文,西安建筑科技大学, 2017.
17 Kong X M, Liu H, Lu Z B, et al. Cement and Concrete Research, 2015, 67,168.
18 Zivica V. Bulletin RILEM, 1965, 28, 121.
19 vegl F, uput-Strupi J,krlep L, et al. Cement and Concrete Research, 2008, 38, 945.
20 Bernal S A, Provis J L, Rose V, et al. Cement Concrete Composites, 2011, 33, 46.
21 Zhang Z H, Wang H, Provis J L, et al. Thermochimica Acta 2012, 539, 23.
22 Feng H J, Le H T N, Wang S S, et al. Construction and Building Mate-rials, 2016, 129,48.
23 Li H J. Journal of Civil,Architectural Environmental Engineering, 2011, 33, 34(in Chinese).
李化建. 土木建筑与环境工程, 2011, 33,34.
24 Zhou H H, Wu X Q, Xu Z Z, et al. Cement Concrete Composites, 1993, 23,1253.
25 Gao Z Y, Wang S W, Lü X D, et al. Journal of Yangtze River Scientific Research Institute, 2018, 35(12), 138(in Chinese).
高志扬,王圣文,吕兴栋,等. 长江科学院院报, 2018, 35(12),138.
26 Duan Y F. Study on the material based geopolymer cement. Master's Thesis, Hebei University of Technology, China, 2004(in Chinese).
段瑜芳. 土聚水泥基材料的研究.硕士学位论文, 河北理工学院, 2004.
[1] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[2] 叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
[3] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[4] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[5] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[6] 张长森, 朱宝贵, 李杨, 冯桢哲, 王毓, 胡志超. 镍渣/偏高岭土基地聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(23): 193-197.
[7] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed