Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 961-964    https://doi.org/10.11896/j.issn.1005-023X.2018.06.020
  材料研究 |
复配稀土改性剂对MGF/PTFE复合材料性能的影响
叶恩淦1, 2, 王海波2, 朱月华2, 蒋利华2, 卓宁泽2
1 南京工业大学材料科学与工程学院,南京 210009;
2 南京工业大学电光源材料研究所,南京 210015
Effect of Compound Rare Earth Modifier on Properties of MGF/PTFE Composites
YE Engan1, 2, WANG Haibo2, ZHU Yuehua2, JIANG Lihua2, ZHUO Ningze2
1 School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009;
2 Research Institute of Electric Light Source Materials, Nanjing Tech University, Nanjing 210015
下载:  全 文 ( PDF ) ( 2124KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用稀土改性剂(RES)与硅烷偶联剂(PTMS)按不同组分配比对磨碎玻璃纤维(MGF)表面进行改性处理,将改性后的磨碎玻璃纤维粉末与聚四氟乙烯分散液机械混合,然后热压制得复合材料。探讨了复配稀土改性剂对MGF/PTFE复合材料介电性能、热膨胀系数(CTE)、热导率的影响。采用FTIR手段对稀土改性剂未改性的磨碎玻璃纤维和改性后的磨碎玻璃纤维的结构进行了测试,并用扫描电子显微镜(SEM)对复合材料的断口形貌进行分析。结果表明,复配改性剂能很好地促进MGF与PTFE之间的界面粘结,提高MGF/PTFE复合材料的性能。当RES、PTMS的含量分别为0.3%(质量分数)、1.7%(质量分数)时,MGF/PTFE复合材料的性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶恩淦
王海波
朱月华
蒋利华
卓宁泽
关键词:  稀土  硅烷偶联剂  玻璃纤维  MGF/PTFE复合材料    
Abstract: Rare earth modifier (RES) and phenyl trimethoxy silane (PTMS) were used for the surface treatment of milled glass fiber (MGF) with different ratios. The composites were prepared by modified milled glass fiber powder and PTFE aqueous dispersion with hot pressing method after mechanical mixture. The effect of mixing ratios of RES/PTMS components on the dielectric properties, coefficient of thermal expansion and heat conduction properties of MGF/PTFE composites were investigated. FTIR spectra of RES, unmodified and modified of MGF were tested, and then the fracture surfaces were analyzed by SEM. The experimental results showed that mixing ratios of RES/PTMS components could promoting interfacial adhesion between the glass fiber and PTFE. Which was an effective way in improving the properties of the composites. The optimal performance of the prepared MGF/PTFE with the mass fraction of RES and PTME of 0.3% and 1.7% respectively.
Key words:  rare earth    phenyl trimethoxy silane    glass fiber    MGF/PTFE composites
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TB332  
通讯作者:  王海波,男,1963年生,硕士,教授,硕士研究生导师,研究方向为稀土发光材料以及微波材料 E-mail:wanghaibo88@163.com   
作者简介:  叶恩淦:男,1992年生,硕士研究生,研究方向为微波材料 E-mail:3458073370@qq.com
引用本文:    
叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
YE Engan, WANG Haibo, ZHU Yuehua, JIANG Lihua, ZHUO Ningze. Effect of Compound Rare Earth Modifier on Properties of MGF/PTFE Composites. Materials Reports, 2018, 32(6): 961-964.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.020  或          http://www.mater-rep.com/CN/Y2018/V32/I6/961
1 Subodh G, Pavithran C, Mohanan P, et al. PTFE/Sr2Ce2Ti5O16, polymer ceramic composites for electronic packaging applications[J].Journal of the European Ceramic Society,2007,27(8-9):3039.
2 Tummala R R. Ceramic and glass ceramic packaging in the 1990s[J].Journal of the American Ceramic Society,2005,74(5):895.
3 Chan K S, Page R A. Origin of the creep-crack growth threshold in a glass-ceramic[J].Journal of the American Ceramic Society,2010,75(75):603.
4 Cheng Xianhua, Xue Yujun, Xie Chaoying, et al. Effect of rare earths modification of glass fiber on friction and wear properties of PTFE composite[J].Journal of Inorganic Materials,2002,17(6):1321(in Chinese).
程先华,薛玉君,谢超英,等.稀土改性玻璃纤维对PTFE复合材料摩擦磨损性能的影响[J].无机材料学报,2002,17(6):1321.
5 Cheng Xianhua, Xue Yujun, Xie Chaoying. Sliding wear behaviors of PTFE composite filied with glass fiber treated with rare earths[J].Acta Materiae Compositae Sinica,2003,20(3):108(in Chinese).
程先华,薛玉君,谢超英.稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能[J].复合材料学报,2003,20(3):108.
6 Yu Hongwei, Han Weirong, Liu Lei, et al. Two-dimensional infrared spectroscopy study on polytetrafluoroetlene F-C-F stretching vibration[J].Materials Review B:Research Papers,2014,28(12):95(in Chinese).
于宏伟,韩卫荣,刘磊,等.聚四氟乙烯F-C-F伸缩振动二维红外光谱研究[J].材料导报:研究篇,2014,28(12):95.
7 Rao Y, Qu J, Marinis T, et al. A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory[J].IEEE Transactions on Components & Packaging Technologies,2001,23(4):680.
8 James N K, Jacob K S, Murali K P, et al. Ba(Mg1/3 Ta2/3 )O3, filled PTFE composites for microwave substrate applications[J].Materials Chemistry & Physics,2010,122(2-3):507.
9 Sasikala T S, Sebastian M T. Mechanical, thermal and microwave dielectric properties of Mg2SiO4, filled polyteterafluoroethylene composites[J].Ceramics International,2016,42(6):7551.
10 Wei Meiying, Wang Haifeng, Wang Juhua, et al. The preparation and properties of MoS2 filled PTFE composites materials[J].Mate-rials Review,2013,27(s1):59(in Chinese).
魏美英,汪海风,王菊华,等.MoS2填充PTFE复合材料的制备及性能研究[J].材料导报,2013,27(专辑21):59.
11 Yuan Y, Cui Y R, Wu K T, et al. TiO and SiO filled PTFE compo-sites for microwave substrate applications[J].Journal of Polymer Research,2014,21(2):380.
12 Zhang J, Liu J, Zhuang R, et al. Single MWNT-glass fiber as strain sensor and switch[J].Advanced Materials,2011,23(23):3392.
13 Pak S H, Caze C. Acid base interactions on interfacial adhesion and mechanical responses for glass fiber reinforced low density polyethylene[J].Journal of Applied Polymer Science,1997,65(1):143.
14 Thomas S, Raman S, Mohanan P, et al. Effect of coupling agent on the thermal and dielectric properties of PTFE/Sm2Si2O7,compo-sites[J].Composites Part A Applied Science & Manufacturing,2010,41(9):1148.
15 Chen Y C, Lin H C, Lee Y D. The effects of filler content and size on the properties of PTFE/SiO2, composites[J].Journal of Polymer Research,2003,10(4):247.
16 Harada M, Okamoto N, Ochi M. Fracture toughness and fracture mechanism of liquid-crystalline epoxy resins with different polydomain structures[J].Journal of Polymer Science Part B Polymer Phy-sics,2010,48(48):2337.
17 Zhang G, Sun Y, Niu R, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J].Raremetal Materials & Engineering,2005,34(12):1926.
[1] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[2] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[3] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[4] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[5] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[6] 尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
[7] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[8] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[9] 张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
[10] 严子迪, 冯可芹, 陈长鸿, 税玥. La2O3对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 材料导报, 2018, 32(16): 2763-2767.
[11] 赵丽娟, 田晓, 姚占全, 江丽萍. Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能[J]. 材料导报, 2018, 32(16): 2832-2836.
[12] 张赛楠, 潘利文, 罗涛, 黄丹琳, 董强, 胡治流. 稀土La和Ce及超声处理对ZL201铝合金显微组织及抗拉强度的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2452-2457.
[13] 刘松, 姚楚, 杨振, 李栋辉, 江学良. 稀土氧化物填充丁基发泡橡胶阻尼性能的研究*[J]. 《材料导报》期刊社, 2017, 31(8): 46-50.
[14] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[15] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed