Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 961-964    https://doi.org/10.11896/j.issn.1005-023X.2018.06.020
  材料研究 |
复配稀土改性剂对MGF/PTFE复合材料性能的影响
叶恩淦1, 2, 王海波2, 朱月华2, 蒋利华2, 卓宁泽2
1 南京工业大学材料科学与工程学院,南京 210009;
2 南京工业大学电光源材料研究所,南京 210015
Effect of Compound Rare Earth Modifier on Properties of MGF/PTFE Composites
YE Engan1, 2, WANG Haibo2, ZHU Yuehua2, JIANG Lihua2, ZHUO Ningze2
1 School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009;
2 Research Institute of Electric Light Source Materials, Nanjing Tech University, Nanjing 210015
下载:  全 文 ( PDF ) ( 2124KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用稀土改性剂(RES)与硅烷偶联剂(PTMS)按不同组分配比对磨碎玻璃纤维(MGF)表面进行改性处理,将改性后的磨碎玻璃纤维粉末与聚四氟乙烯分散液机械混合,然后热压制得复合材料。探讨了复配稀土改性剂对MGF/PTFE复合材料介电性能、热膨胀系数(CTE)、热导率的影响。采用FTIR手段对稀土改性剂未改性的磨碎玻璃纤维和改性后的磨碎玻璃纤维的结构进行了测试,并用扫描电子显微镜(SEM)对复合材料的断口形貌进行分析。结果表明,复配改性剂能很好地促进MGF与PTFE之间的界面粘结,提高MGF/PTFE复合材料的性能。当RES、PTMS的含量分别为0.3%(质量分数)、1.7%(质量分数)时,MGF/PTFE复合材料的性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶恩淦
王海波
朱月华
蒋利华
卓宁泽
关键词:  稀土  硅烷偶联剂  玻璃纤维  MGF/PTFE复合材料    
Abstract: Rare earth modifier (RES) and phenyl trimethoxy silane (PTMS) were used for the surface treatment of milled glass fiber (MGF) with different ratios. The composites were prepared by modified milled glass fiber powder and PTFE aqueous dispersion with hot pressing method after mechanical mixture. The effect of mixing ratios of RES/PTMS components on the dielectric properties, coefficient of thermal expansion and heat conduction properties of MGF/PTFE composites were investigated. FTIR spectra of RES, unmodified and modified of MGF were tested, and then the fracture surfaces were analyzed by SEM. The experimental results showed that mixing ratios of RES/PTMS components could promoting interfacial adhesion between the glass fiber and PTFE. Which was an effective way in improving the properties of the composites. The optimal performance of the prepared MGF/PTFE with the mass fraction of RES and PTME of 0.3% and 1.7% respectively.
Key words:  rare earth    phenyl trimethoxy silane    glass fiber    MGF/PTFE composites
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TB332  
通讯作者:  王海波,男,1963年生,硕士,教授,硕士研究生导师,研究方向为稀土发光材料以及微波材料 E-mail:wanghaibo88@163.com   
作者简介:  叶恩淦:男,1992年生,硕士研究生,研究方向为微波材料 E-mail:3458073370@qq.com
引用本文:    
叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
YE Engan, WANG Haibo, ZHU Yuehua, JIANG Lihua, ZHUO Ningze. Effect of Compound Rare Earth Modifier on Properties of MGF/PTFE Composites. Materials Reports, 2018, 32(6): 961-964.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.020  或          https://www.mater-rep.com/CN/Y2018/V32/I6/961
1 Subodh G, Pavithran C, Mohanan P, et al. PTFE/Sr2Ce2Ti5O16, polymer ceramic composites for electronic packaging applications[J].Journal of the European Ceramic Society,2007,27(8-9):3039.
2 Tummala R R. Ceramic and glass ceramic packaging in the 1990s[J].Journal of the American Ceramic Society,2005,74(5):895.
3 Chan K S, Page R A. Origin of the creep-crack growth threshold in a glass-ceramic[J].Journal of the American Ceramic Society,2010,75(75):603.
4 Cheng Xianhua, Xue Yujun, Xie Chaoying, et al. Effect of rare earths modification of glass fiber on friction and wear properties of PTFE composite[J].Journal of Inorganic Materials,2002,17(6):1321(in Chinese).
程先华,薛玉君,谢超英,等.稀土改性玻璃纤维对PTFE复合材料摩擦磨损性能的影响[J].无机材料学报,2002,17(6):1321.
5 Cheng Xianhua, Xue Yujun, Xie Chaoying. Sliding wear behaviors of PTFE composite filied with glass fiber treated with rare earths[J].Acta Materiae Compositae Sinica,2003,20(3):108(in Chinese).
程先华,薛玉君,谢超英.稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能[J].复合材料学报,2003,20(3):108.
6 Yu Hongwei, Han Weirong, Liu Lei, et al. Two-dimensional infrared spectroscopy study on polytetrafluoroetlene F-C-F stretching vibration[J].Materials Review B:Research Papers,2014,28(12):95(in Chinese).
于宏伟,韩卫荣,刘磊,等.聚四氟乙烯F-C-F伸缩振动二维红外光谱研究[J].材料导报:研究篇,2014,28(12):95.
7 Rao Y, Qu J, Marinis T, et al. A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory[J].IEEE Transactions on Components & Packaging Technologies,2001,23(4):680.
8 James N K, Jacob K S, Murali K P, et al. Ba(Mg1/3 Ta2/3 )O3, filled PTFE composites for microwave substrate applications[J].Materials Chemistry & Physics,2010,122(2-3):507.
9 Sasikala T S, Sebastian M T. Mechanical, thermal and microwave dielectric properties of Mg2SiO4, filled polyteterafluoroethylene composites[J].Ceramics International,2016,42(6):7551.
10 Wei Meiying, Wang Haifeng, Wang Juhua, et al. The preparation and properties of MoS2 filled PTFE composites materials[J].Mate-rials Review,2013,27(s1):59(in Chinese).
魏美英,汪海风,王菊华,等.MoS2填充PTFE复合材料的制备及性能研究[J].材料导报,2013,27(专辑21):59.
11 Yuan Y, Cui Y R, Wu K T, et al. TiO and SiO filled PTFE compo-sites for microwave substrate applications[J].Journal of Polymer Research,2014,21(2):380.
12 Zhang J, Liu J, Zhuang R, et al. Single MWNT-glass fiber as strain sensor and switch[J].Advanced Materials,2011,23(23):3392.
13 Pak S H, Caze C. Acid base interactions on interfacial adhesion and mechanical responses for glass fiber reinforced low density polyethylene[J].Journal of Applied Polymer Science,1997,65(1):143.
14 Thomas S, Raman S, Mohanan P, et al. Effect of coupling agent on the thermal and dielectric properties of PTFE/Sm2Si2O7,compo-sites[J].Composites Part A Applied Science & Manufacturing,2010,41(9):1148.
15 Chen Y C, Lin H C, Lee Y D. The effects of filler content and size on the properties of PTFE/SiO2, composites[J].Journal of Polymer Research,2003,10(4):247.
16 Harada M, Okamoto N, Ochi M. Fracture toughness and fracture mechanism of liquid-crystalline epoxy resins with different polydomain structures[J].Journal of Polymer Science Part B Polymer Phy-sics,2010,48(48):2337.
17 Zhang G, Sun Y, Niu R, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J].Raremetal Materials & Engineering,2005,34(12):1926.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[3] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[6] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[7] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[8] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[9] 戴宇恒, 满廷慧, 李朋, 徐乐钱, 刘宇, 韦习成. 稀土合金化对高碳高合金工模具钢的影响[J]. 材料导报, 2024, 38(23): 23100036-8.
[10] 周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
[11] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[12] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[13] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[14] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[15] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed